Skip to main content
Log in

Polarization-Field Influence on Light-Ion Channeling in Carbon Nanotubes

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The polarization potential of the interaction between fast charged particles and multilayer-nanotube walls, which arises due to the excitation of surface modes of electromagnetic oscillations, is estimated. A nanotube is interpreted as a set of concentric cylindrical layers with specified dielectric properties. Formulas for calculating the polarization-field potential are derived as applied to a charged particle moving parallel to the multilayer nanotube axis. Numerical calculations are performed in the single-mode approximation of a dielectric function. The polarization forces arising in a multilayer nanotube are compared with those corresponding to the single-layer one. It is demonstrated that, under certain conditions, existing external layers can sufficiently affect the polarization forces acting on charged-particle channeling in a nanotube. At the same time, model calculations indicate that outer layers exert an insignificant influence on the polarization losses of the channeling-particle energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Borka, S. Petrovic, N. Neškovic, D. J. Mowbray, and Z. L. Miškovic, Phys. Rev. A 73, 062902 (2006). doi 10.1103/PhysRevA.73.062902

    Article  Google Scholar 

  2. D. J. Mowbray, Z. L. Miškovic, F. O. Goodman, and Wang Yiu-Nian, Phys. Rev. B 70, 195418 (2004). doi 10.1103/PhysRevB.70.195418

    Article  Google Scholar 

  3. D. J. Mowbray, S. Segui, and J. Gervasoni, Phys. Rev. B 82, 035405 (2010). doi 10.1103/Phys.Rev.B.82.035405

    Article  Google Scholar 

  4. A. Moradi, Phys. Lett. A 372, 5614 (2008). doi 10.1016/j.physleta.2008.06.071

    Article  Google Scholar 

  5. L. Karbunar, D. Borka, I. Radovicr, and Z. L. Miškovicr, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 82 (2015). doi 10.1016/j.nimb.2015.10.033

    Article  Google Scholar 

  6. Y. H. Tu, C. M. Kwei, Y. C. Li, and C. J. Tung, Phys. Rev. B 74, 045403 (2006). doi 10.1103/Phys.Rev.B.74.045403

    Article  Google Scholar 

  7. S. Segui, J. L. Gervasoni, and N. R. Arista, Radiat. Phys. Chem. 76, 582 (2007). doi 10.1016/j.radphyschem. 2005.10.050

    Article  Google Scholar 

  8. H. Khosravi, N. Daneshfar, and A. Bahari, Opt. Commun. 281, 5045 (2008). doi 10.1016/j.optcom. 2008.06.063

    Article  Google Scholar 

  9. A. S. Sabirov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (2), 297 (2014). doi 10.1134/S1027451014010169

    Article  Google Scholar 

  10. M. Z. Herrera and J. L. Gervasoni, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 415(2009). doi 10.1016/j.nimb.2008.10.078

    Article  Google Scholar 

  11. O. Sato, Y. Tanaka, M. KobayLashi, and A. Hasegawa, Phys. Rev. B 48, 1947 (1993). doi 10.1103/Phys.Rev.B.48.1947

    Article  Google Scholar 

  12. G. Gumbs, A. Balassis, and P. Fekete, Phys. Rev. B 73, 075411 (2006). doi 10.1103/Phys.Rev.B.73.075411

    Article  Google Scholar 

  13. G. M. Filippov, Bull. Russ. Acad. Sci.: Phys. 76 (6), 678 (2012). doi 10.3103/S1062873812060159

    Article  Google Scholar 

  14. G. M. Filippov and A. S. Sabirov, Bull. Russ. Acad. Sci.: Phys. 78 (6), 478 (2014). doi 10.3103/S1062873814060124

    Article  Google Scholar 

  15. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Ed. by M. Abramowitz and I. A. Stegun (Dover Publ., New York, 1965).

  16. A. Bahari, A. R. Mohamadi, and N. Daneshfar, Opt. Commun. 285, 800 (2012). doi 10.1016/j.optcom. 2011.10.097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sabirov.

Additional information

Original Russian Text © A.S. Sabirov, 2018, published in Poverkhnost’, 2018, No. 8, pp. 86–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabirov, A.S. Polarization-Field Influence on Light-Ion Channeling in Carbon Nanotubes. J. Surf. Investig. 12, 811–815 (2018). https://doi.org/10.1134/S1027451018040353

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018040353

Keywords

Navigation