Advertisement

Atomic-Force-Microscopy Analysis of Uranium Bis-Phthalocyanine and Its Pyrolysed Derivatives

  • V. Yu. Bairamukov
  • V. T. Lebedev
  • V. I. Tikhonov
Article

Abstract

The morphology of the surface of thin films of uranium bis-phthalocyanine and its pyrolysed derivatives is analyzed by atomic-force microscopy. During the pyrolysis of samples in an inert atmosphere (400–800°C), the transition from a crystalline to amorphous carbon structure with immobilized metal atoms is observed in uranium bis-phthalocyanine thin films deposited onto a substrate. It is found that at temperatures above 1000°C the pyrolysis is accompanied by the aggregation of nanoscale particles and the formation of ultraporous matrices with a high specific surface area (∼102 m2/g).

Keywords

atomic-force microscopy carbon matrix radioactive waste bis-phthalocyanines pyrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-L. Desvaux, in Proc. International Conference on Radioactive Waste Management and Environmental Remediation ICEM'97 (ASME, Singapore, 1997), p.813.Google Scholar
  2. 2.
    Yu. V. Glagolenko, E. G. Dzekun, E. G. Drozhko, et al., Vopr. Radiats. Bezop., No. 2, 3 (1996).Google Scholar
  3. 3.
    Australian Nuclear Science and Technology Organization. http://www.ansto.gov.au/BusinessServices/ANSTOSynroc/index.htm.Google Scholar
  4. 4.
    D. G. Bennett, J. J. W. Higgo, and S. M. Wickham, Review of Waste Immobilization Matrices (Galson Science, Oakham, 2001).Google Scholar
  5. 5.
    I. A. Andryushin and Yu. A. Yudin, Management of Radioactive Waste and Nuclear Fuels Radioactive Waste: Review of Problems (Russian Federal Nuclear Center -All-Russian Research Institute of Experimental Physics, Sarov, 2010) [in Russian].Google Scholar
  6. 6.
    S. V. Stefanovskii, Yu. M. Kulyako, S. V. Yudintsev, et al., Vopr. Radiats. Bezop., No. 1, 15 (2002).Google Scholar
  7. 7.
    V. I. Tikhonov, P. N. Moskalev, and V. K. Kapustin, in Proc. 11th International Conference on Environmental Remediation and Radioactive Waste Management ICEM-2007 (Bruges, 2008), Rep. No. 7084.Google Scholar
  8. 8.
    V. I. Tikhonov, V. K. Kapustin, and P. N. Moskalev, RF Patent No. 2343575 (2007).Google Scholar
  9. 9.
    V. I. Tikhonov, V. K. Kapustin, V. T. Lebedev, et al., Radiochemistry 58 (5), 545 (2016).CrossRefGoogle Scholar
  10. 10.
    V. Yu. Bairamukov, D. V. Lebedev, and V. I. Tikhonov, in Proc. International Multidisciplinary Microscopy Congress, Antalya, 2013, Springer Proceedings in Physics (Springer Int., 2014), Vol. 154, p.189.Google Scholar
  11. 11.
    D. Graw, Diphthalocyaninato-thorium(IV) and -uranium(IV), D. F. Lux, D. Dempf, D. Graw, Eds., Angew. Chem. Internat. 7 (10), 819 (1968).Google Scholar
  12. 12.
    A. E. Sovestnov, V. K. Kapustin, V. I. Tikhonov, et al., Phys. Solid State 56 (8), 1673 (2014).CrossRefGoogle Scholar
  13. 13.
    I. S. Kirin, P. N. Moskalev, and Yu. A. Makashev, Russ. J. Inorg. Chem., No. 10, 1065 (1965).Google Scholar
  14. 14.
    V. M. Lebedev, V. T. Lebedev, D. N. Orlova, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (5), 1002 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Yu. Bairamukov
    • 1
  • V. T. Lebedev
    • 1
  • V. I. Tikhonov
    • 1
  1. 1.Petersburg Nuclear Physics InstituteNational Research Center Kurchatov InstituteGatchina, Leningrad regionRussia

Personalised recommendations