Simulation of Neutron Reflection from the Surface of a Nanostructured Object in the Modified Kinematic Approximation

  • A. V. Belushkin
  • S. A. Manoshin


The applicability of the modified kinematic approximation for simulation of the specular reflection and the diffraction of a neutron beam from regularly ordered nanostructured objects on the surface and in the surface material layer is analyzed. The obtained results are compared with those of the real experiment and simulation of the distorted-wave Born approximation (DWBA). The influence of various factors on the obtained results is analyzed. These factors include the effect of neutron-wave refraction at the interfaces between media, the spectrometer-resolution function, and renormalization of the results for a nonspecular scattering signal based on data obtained for a specular channel. It is shown that, in many cases, it is possible to obtain rather good agreement with the experimental data and with the results of calculations using DWBA methods and of calculations using the Parratt algorithm.


kinematic approximation nanostructures diffraction simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Parratt, Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
  2. 2.
    F. Abeles, Ann. Phys. 5, 596 (1950).CrossRefGoogle Scholar
  3. 3.
    P. Mikul’ik and T. Baumbach, Phys. Rev. 59, 7632 (1999).CrossRefGoogle Scholar
  4. 4.
    P. Croce, L. Nevot, and B. Pardo, C. R. Acad. Sci. Paris 274 (803), 136 (1972).Google Scholar
  5. 5.
    R. Pynn, Phys. Rev. B 45 (2), 602 (1992).CrossRefGoogle Scholar
  6. 6.
    H. Zabel, K. Theis Bröhl, and B. P. Toperverg, Polarized Neutron Reflectivity and Scattering from Magnetic Nanostructures and Spintronic Materials. Handbook of Magnetism and Advanced Magnetic Materials (John Wiley and Sons, 2007).Google Scholar
  7. 7.
    B. P. Toperverg, Phys. Met. Metallogr. 116 (13), 1337 (2015).CrossRefGoogle Scholar
  8. 8.
    C. J. Metting, Dissertation Submitted to the Faculty of the Graduate School of the University of Maryland (College Park, 2011). 0117E_12778.pdf.Google Scholar
  9. 9.
    Y. Yoneda, Phys. Rev. 131 (3), 2010 (1963).CrossRefGoogle Scholar
  10. 10.
    R. Lazzari, J. Appl. Crystallogr. 35, 406 (2002).CrossRefGoogle Scholar
  11. 11. Scholar
  12. 12.
    A. Gibaud and G. Vignaud, Specular Reflectivity from Smooth and Rough Surfaces in X-Ray and Neutron Reflectivity. Principles and Applications, Ed. by J. Daillant and A. Gibaud (Springer, Berlin-Heidelberg, 2009).Google Scholar
  13. 13.
    I. W. Hamley and J. S. Pedersen, J. Appl. Crystallogr. 27, 29 (1994).CrossRefGoogle Scholar
  14. 14.
    T. L. Crowley, Phys. A (Amsterdam, Neth.) 195 (3), 354 (1993).CrossRefGoogle Scholar
  15. 15.
    W. A. Hamilton, P. D. Butler, J. B. Hayter, et al., Phys. B 221 (1–4), 309 (1996).CrossRefGoogle Scholar
  16. 16.
    M. Kerscher, P. Busch, S. Mattauch, et al., Phys. Rev. E 83, 030401 (2011).CrossRefGoogle Scholar
  17. 17.
    A. V. Belushkin, S. A. Manoshin, and V. S. Rikhvitskiy, Crystallogr. Rep. 61 (5), 760 (2016).CrossRefGoogle Scholar
  18. 18.
    E. L. Schwartz and C. K. Ober, Phase-Selective Chemistry in Block Copolymer Systems, in Advanced Nanomaterials, Ed. by K. E. Geckeler and H. Nishide (Wiley-VCH, Weinheim, 2009).Google Scholar
  19. 19.
    M. Wolff, U. Scholz, R. Hock, et al., Phys. Rev. Lett. 92, 255501 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations