Skip to main content
Log in

Comparative Study of Kinetic and Mechanistic Study of Oxidation of L-Alanine and L-Proline by Sodium Periodate Catalyzed by Osmium(VIII) in Micromolar Concentrations

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of two aliphatic α-amino acids (AA), namely, alanine and proline by NaIO4 has been investigated in alkaline medium in the presence of osmium(VIII) catalyst at a constant ionic strength of 1.0 mol dm–3 and at 25°C. The reactions were very slow to be measured in the absence of the catalyst. The reactions have a first order with respect both to [Os(VIII)] and [NaIO4], and fractional order with respect to both [L-alanine] (Ala) and [L-proline](Pro). The reaction show negligible effect of dielectric constant and ionic strength of medium. Increasing [OH] concentration was found to decrease the oxidation rates while mercuric acetate acts as scavenger for both the reactions. A plausible oxidation mechanism has been proposed and the rate law expression has been derived. Both spectral and kinetic evidences revealed formation of intermediate complexes between AA and Os(VIII) before the rate-controlling step. Kinetic investigations have revealed that the order of reactivity is Pro > Ala. The complex thus formed reacts with the oxidant [NaIO4] by an inner-sphere mechanism with formation of the oxidation products of the amino acids which were identified as the corresponding carboxylic compounds, ammonium ion and carbon dioxide. The activation parameters of the first order rate constants were evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Scheme 2.
Scheme 3.
Scheme 4.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. K. Das, Coord. Chem. Rev. 213, 307 (2001).

    Article  CAS  Google Scholar 

  2. G. H. Hugar and S. T. Nandibewoor, Trans. Met Chem. 19, 215 (1994).

    Article  CAS  Google Scholar 

  3. S. Srivastava and M. Gupta, Bull. Catal. Soc. India 14, 1 (2015).

    Google Scholar 

  4. S. M. Tuwar, S. T. Nandibewoor, and J. R. Raju, Indian J. Chem 30, 158 (1991).

    Google Scholar 

  5. M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, 2nd ed. (Van Nustrand Reinhold, New York, 1964), p. 138.

    Google Scholar 

  6. L. Maros, I. Molnar-Perel, E. Schissel, and V. Szerdahelyi, J. Chem. Soc. Perkin Trans. 11, 39 (1980).

    Article  Google Scholar 

  7. V. A. Morab, S. M. Tuwar, S. T. Nandibewoor, and J. R. Raju, J. Indian Chem. Soc. 69, 862 (1992).

    CAS  Google Scholar 

  8. R. Pascual, A. H. Miguel, and E. Callie, Can. J. Chem. 67, 634 (1989).

    Article  CAS  Google Scholar 

  9. M. P. Rao, B. S. Sethuram, and N. N. Rao, J. Indian Chem. Soc. 57, 149 (1980).

    CAS  Google Scholar 

  10. G. Dahlgren and D. K. Reed, J. Am. Chem. Soc. 71, 1380 (1967).

    Article  Google Scholar 

  11. G. J. Buist, A. Bunton, and W. C. P. Hipperson, J. Chem. Soc. B, 2128 (1971).

  12. G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denny, Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed. (ELBS Longman, Essex UK, 1996), p. 455.

    Google Scholar 

  13. A. I. Vogel, A Text Book of Practical Organic Chemistry Including Quantitative Organic Analysis (ELBS Longman, Essex, UK, 1973), p. 332.

    Google Scholar 

  14. G. K. Vemulapalli, Physical Chemistry (Prentice-Hall, Englewood Cliffs, NJ, 1997), p. 734.

    Google Scholar 

  15. B. Sethuram, Some Aspects of Electron Transfer Reactions Involving Organic Molecules (Allied, New Delhi, 2003), p. 78.

    Google Scholar 

  16. T. S. Kiran, D. C. Hiremath, and S. T. Nandibewoor, Z. Phys. Chem. 221, 501 (2007).

    Article  CAS  Google Scholar 

  17. R. Chang, Physical Chemistry with Applications to Biological Systems (Macmillan, New York, 1981), p. 326.

    Google Scholar 

  18. V. C. Seregar, C. V. Hiremath, and S. T. Nandibewoor, Z. Phys. Chem. 220, 615 (2006).

    Article  CAS  Google Scholar 

  19. V. B. List, R. A. Lerner, and C. F. Barbes, J. Am. Chem. Soc. 122, 2395 (2000).

    Article  CAS  Google Scholar 

  20. D. L. Kamble and S. T. Nandibewoor, J. Phys. Org. Chem. 11, 171 (1998).

    Article  CAS  Google Scholar 

  21. J. K. Laidler, Chemical Kinetics, 3rd ed. (Pearson Education, New Delhi, India, 2004).

    Google Scholar 

  22. N. Sutin, Ann. ReV. Phys. Chem. 17, 119 (1966).

    Article  CAS  Google Scholar 

  23. M. Lancaster and R. S. Murray, J. Chem. Soc., A, 2755 (1971).

  24. S. K. Upadhyay and M. C. Agrawal, Indian J. Chem. A 15, 709 (1977).

    Google Scholar 

  25. S. A. Farokhi and S. T. Nandibewoor, Tetrahedron 59, 7595 (2003).

    Article  CAS  Google Scholar 

  26. B. Sethuram, Some Aspects of Electron Transfer Reactions Involving Organic Molecules (Allied, New Delhi, 2003), p. 78.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Head, Department of Chemistry, University of Lucknow, Lucknow, for providing necessary laboratory facilities, spectral, elemental and biological activity data. Authors wish to thank reviewers for greatly improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Srivastava.

Ethics declarations

None of the authors of the above manuscript has declared any conflict of interest which may arise from being named as an author in the manuscript.

Additional information

The article is published in the original.

APPENDIX

APPENDIX

Derivation of Rate Law for Scheme 1

$$\frac{{d[{\text{IO}}_{4}^{ - }]}}{{dt}} = {\text{rate}} = {{k}_{3}}[{\text{IO}}_{4}^{ - }][{\text{Complex}}],$$
((A.1))

\([{\text{Os}}{{({\text{VIII}})}_{T}}]\) is equal to sum of concentration of,

$${\text{Os}}{{({\text{VIII}})}_{T}} = [{{C}_{1}}] + [{{C}_{2}}] + [{{C}_{3}}],$$
((A.2))
$$\begin{gathered} \frac{{d[{{C}_{1}}]}}{{dt}} = - {{k}_{1}}[{{C}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] + {{k}_{{ - 1}}}[{{C}_{2}}] \\ - \;{{k}_{2}}[{{C}_{1}}][{\text{AA}}] + {{k}_{{ - 2}}}[{{C}_{3}}]. \\ \end{gathered} $$
((A.3))

On applying steady state approximation to Eq. (A.3) we get,

$$ - {{k}_{1}}~{{C}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}]\, + \,{{k}_{{ - 1}}}[{{C}_{2}}]\, - \,{{k}_{2}}[{{C}_{1}}][{\text{AA}}]\, + \,{{k}_{{ - 2}}}[{{C}_{3}}]\, = \,0.$$
((A.4))

Similarly we have rate of formation of [C2],

$$\frac{{d[{{C}_{2}}]}}{{dt}} = {{k}_{1}}~\left[ {{{C}_{1}}} \right][{\text{O}}{{{\text{H}}}^{ - }}] - {{k}_{{ - 1}}}[{{C}_{2}}].$$
((A.5))

On applying steady state approximation to the above equation we get,

$${{k}_{1}}[{{C}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] - {{k}_{{ - 1}}}[{{C}_{2}}] = 0,$$
((A.6))
$$[{{C}_{2}}] = \frac{{{{k}_{1}}[{{C}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}]}}{{{{k}_{{ - 1}}}}}.$$
((A.7))

From Eqs. (A.4) and (A.6) we get,

$$[{{C}_{1}}] = \frac{{{{k}_{{ - 2}}}[{{C}_{3}}]}}{{{{k}_{2}}[{\text{AA}}]}}.$$
((A.8))

Putting the value of \(\left[ {{{C}_{1}}} \right]\)in Eq. (A.7) we get,

$$\begin{gathered} \text{[}{{C}_{2}}] = \frac{{{{k}_{1}}{{k}_{{ - 2}}}[{\text{O}}{{{\text{H}}}^{ - }}][{{C}_{3}}]}}{{{{k}_{{ - 1~~}}}{{k}_{2}}[{\text{AA}}]}}, \\ [{{C}_{2}}] = \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{C}_{3}}]}}{{{{K}_{2}}[{\text{AA}}]}}\;\;~\left\{ {\because {{K}_{1}} = \frac{{{{k}_{1}}}}{{{{k}_{{ - 1}}}}};\;{{K}_{{2~}}} = \frac{{{{k}_{2}}}}{{{{k}_{{ - 2}}}}}} \right\}. \\ \end{gathered} $$
((A.9))

Therefore from Eqs. (A.2), (A.8), and (A.9), we get total concentration of catalyst i.e.,

$${\text{Os}}{{({\text{VIII}})}_{T}} = \frac{{[{{C}_{3}}]}}{{{{K}_{2}}[{\text{AA}}]}} + \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{C}_{3}}]}}{{{{K}_{2}}[{\text{AA}}]}} + [{{C}_{3}}]$$
$$\begin{gathered} = \;\frac{{[{{C}_{3}}]}}{{{{K}_{2}}[{\text{AA}}]}} + \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{C}_{3}}]}}{{{{K}_{2}}[{\text{AA}}]}} + [{{C}_{3}}] \\ = \;[{{C}_{3}}]\left\{ {\frac{{1 + ~~{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}] + {{K}_{2}}[{\text{AA}}]}}{{{{K}_{2}}[{\text{AA}}]}}} \right\}, \\ \end{gathered} $$
((A.10))
$$[{{C}_{3}}] = \left\{ {\frac{{{{K}_{2}}[{\text{AA}}][{\text{Os}}{{{({\text{VIII}})}}_{T}}{\;}]}}{{1 + ~{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}] + {{K}_{2}}[{\text{AA}}]}}} \right\}.$$

Therefore, from Eqs. (A.1) and (A.10) we get,

$${\text{Rate}} = \left\{ {\frac{{{{k}_{3}}{{K}_{2}}[{\text{IO}}_{4}^{ - }][{\text{Os}}{{{({\text{VIII}})}}_{T}}]{\;}[{\text{AA}}]}}{{1 + {{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}] + {{K}_{2}}[{\text{AA}}]}}} \right\}.$$
((A.11))

The rate law is in agreement with all observed kinetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu Gupta, Srivastava, A. & Srivastava, S. Comparative Study of Kinetic and Mechanistic Study of Oxidation of L-Alanine and L-Proline by Sodium Periodate Catalyzed by Osmium(VIII) in Micromolar Concentrations. Russ. J. Phys. Chem. 93, 48–58 (2019). https://doi.org/10.1134/S0036024419010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010096

Keywords:

Navigation