Skip to main content
Log in

Optimal fee structures in hedge funds

  • Original Article
  • Published:
Journal of Asset Management Aims and scope Submit manuscript

Abstract

This paper proposes a framework to analyze hedge funds fee arrangements in which the portfolio construction is determined by the hedge fund manager and the fees are determined via an optimal equilibrium between the manager and the investor. In this setting, fees include management fees (\(\alpha\)) and performance fees (\(\beta\)). We select the paradigm of Expected Utility Theory to determine the managers optimal strategy. Benefiting from the dependence of the optimal terminal payoff on the fee structure, we explore two criteria producing an equilibrium fee mutually satisfying the investor and the manager, one based on Pareto Optimality and the second on negotiable regions. The former also leads to a Pareto efficient frontier of fee structures. We obtain evidence that the popular fee structure of \((\alpha , \beta )=(2\%, 20\%)\) is not an equilibrium fee between manager and investor. Although such equilibrium heavily depends on risk aversion levels and market conditions, the pair \((\alpha , \beta )=(0.5\%, 30.7\%)\) stands out as a fair choice. Moreover, the expected utility of the investor is not monotone in the performance fee for many market conditions. In other words, we prove that fee arrangements which include performance fees are usually beneficial for the investor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Shifting with \(\alpha X_0\) means that \(\alpha\) has a positive effect on the investor’s wealth and his utility function through the shift. Even so we will see in “Fee preferences” section that the investor wants \(\alpha\) to be minimal.

  2. An alternative approach which allows for \(c_2>1\) would be to use a shifted exponential utility function as \(u_{\mathrm{I}}(X_T)=U_{\mathrm{I}}(I_T(X_T))=1-{\mathrm{e}}^{-c_2(X_T-\beta (X_T-B)^+)}\). However, for the extend of our analysis and for better comparability we focus on the stated HARA utility function.

  3. To obtain greater accuracy without simultaneously blowing up the runtime, we evaluate the value functions \(\phi _{\mathrm{M}}\) and \(\phi _{\mathrm{I}}\) with an increment size of 0.5% for \(\alpha\) and \(\beta\) and use cubic interpolation between those discrete points with an increment size of 0.1%. In our numerical calculations, we furthermore need to discretize \(\varPhi _\mathrm{min}\). We do this with an increment of 0.01.

  4. Please note that the Sharpe ratio is only one possible, but reasonable choice for a potential goal function which we use here for illustrative purposes.

  5. In order to capture the equilibrium fee structure appearing at the kink point, we need to increase the upper bound of in the interval \(\varPhi _\mathrm{min}\) for some scenarios.

References

  • Berkelaar, Arjan B., Roy Kouwenberg, and Thierry Post. 2004. Optimal portfolio choice under loss aversion. The Review of Economics and Statistics 86: 973–987.

    Article  Google Scholar 

  • Bichuch, Maxim, and Stephan Sturm. 2014. Portfolio optimization under convex incentive schemes. Finance and Stochastics 18 (4): 873–915.

    Article  Google Scholar 

  • Buraschi, Andrea, Robert Kosowski, and Worrawat Sritrakul. 2014. Incentives and endogenous risk taking: A structural view on hedge fund alphas. The Journal of Finance 69: 2819–2870.

    Article  Google Scholar 

  • Carpenter, Jennifer N. 2000. Does option compensation increase managerial risk appetite? The Journal of Finance 55: 2311–2331.

    Article  Google Scholar 

  • Cox, John C., and Chi-Fu Huang. 1989. Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory 491: 33–83.

    Article  Google Scholar 

  • Cuoco, Domenico, and Ron Kaniel. 2011. Equilibrium prices in the presence of delegated portfolio management. Journal of Financial Economics 101: 2264–296.

    Article  Google Scholar 

  • Djerroud, Ben, David Saunders, Luis Seco, and Mohammad Shakourifar. 2016. Pricing shared-loss hedge fund fee structures. Innovations in Derivatives Markets 165: 369–383.

    Article  Google Scholar 

  • Eggertsson, Gauti B. 2010. What fiscal policy is effective at zero interest rates? NBER Macroeconomics Annual 25: 59–112.

    Article  Google Scholar 

  • Filipovic, Damir, Robert Kremslehner, and Alexander Muermann. 2015. Optimal investment and premium policies under risk shifting and solvency regulation. Journal of Risk and Insurance 82: 261–288.

    Article  Google Scholar 

  • Goetzmann, William N., Jonathan E. Ingersoll, and Stephen A. Ross. 2003. High-water marks and hedge fund management contracts. The Journal of Finance 58 (4): 1685–1718.

    Article  Google Scholar 

  • Guasoni, Paolo, and Jan Oblój. 2016. The incentives of hedge fund fees and high-water marks. Mathematical Finance 26 (2): 269–295.

    Article  Google Scholar 

  • He, Xue D., and Steven Kou. 2016. Profit sharing in hedge funds. Working Paper.

  • Hodder, James E., and Jens C. Jackwerth. 2007. Incentive contract and hedge fund management. Journal of Financial and Quantitative Analysis 42: 811–826.

    Article  Google Scholar 

  • Holt, Charles A., and Susan K. Laury. 2002. Risk aversion and incentive effects. American Economic Review 92: 1644–1655.

    Article  Google Scholar 

  • Karatzas, Ioannis, J. Lehoczky, and Steven E. Shreve. 1987. Explicit solution of a general consumption/investment problem. SIAM Journal of Control and Optimization 25: 1557–1586.

    Article  Google Scholar 

  • Koijen, Ralph S.J. 2014. The cross-section of managerial ability, incentives, and risk preferences. The Journal of Finance 69 (3): 1051–1098.

    Article  Google Scholar 

  • Kraft, Holger. 2005. Optimal portfolios and Heston’s stochastic volatility model: An explicit solution for power utility. Quantitative Finance 5: 303–313.

    Article  Google Scholar 

  • Lan, Yingcong, Neng Wang, and Jinqiang Yang. 2013. The economics of hedge funds. Journal of Financial Economics 110 (2): 300–323.

    Article  Google Scholar 

  • Merton, Robert C. 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. Review of Economics and Statistics 51: 247–257.

    Article  Google Scholar 

  • Merton, Robert C. 1971. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 51: 373–413.

    Article  Google Scholar 

  • Morgenstern, Oskar, and John Von Neumann. 1953. Theory of games and economic behavior. Princeton university press.

  • Puri, Karan, Andreas Krause. 2015. Optimal hedge fund contract parameters: Theory and empirical evidence. Working paper. https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=MMF2015&paper_id=176. Accessed 12 Nov 2018.

  • Reichlin, Christian. 2013. Utility maximization with a given pricing measure when the utility is not necessarily concave. Mathematics and Financial Economics 7 (4): 531–556.

    Article  Google Scholar 

  • Stabile, Gabriele. 2015. Underperformance fees and manager’s portfolio risk taking. International Journal of Financial Research 6: 79–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Escobar-Anel.

Appendices

Appendix 1: Figures

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25.

Appendix 2: Mathematical proofs

Proof of Lemma1:

We show that (13) is equivalent to (15). Therefore, we use the following result.

$$\begin{aligned} {\mathbb {E}}\left[ {\tilde{Z}}_T^{k}{1}_{\{a<{\tilde{Z}}_T<b\}}|{ \mathcal {F}}_t\right]&={\tilde{Z}}_t^{k}{\mathbb {E}}\left[ \left( \frac{{ \tilde{Z}}_T}{{\tilde{Z}}_t}\right) ^{k}{1}_{\{\frac{a}{{\tilde{Z}}_t}< \frac{{\tilde{Z}}_T}{{\tilde{Z}}_t}<\frac{b}{{\tilde{Z}}_t}\}}\right] = {\tilde{Z}}_t^{k}{\mathbb {E}}\left[ \left( \frac{{\tilde{Z}}_T}{{ \tilde{Z}}_t}\right) ^{k}{1}_{\{d_2<\frac{W_{T-t}}{\sqrt{T-t}}<d_1\}}\right] \end{aligned}$$

with

$$\begin{aligned} d_1=-\frac{{\hbox {ln}}(\frac{a}{{\tilde{Z}}_t})+\left( r+\frac{\gamma ^2}{2}\right) (T-t)}{ \gamma \sqrt{T-t}} \text{ and } d_2=-\frac{{\hbox {ln}}(\frac{b}{{\tilde{Z}}_t})+\left( r+\frac{\gamma ^2}{2} \right) (T-t)}{\gamma \sqrt{T-t}} \end{aligned}$$

Hence,

$$\begin{aligned} {\mathbb {E}}\left[ {\tilde{Z}}_T^{k}{1}_{\{a<{\tilde{Z}}_T<b\}}|{\mathcal {F}}_t\right]&= { \tilde{Z}}_t^{k} \int _{d_2}^{d_1}{\mathrm{e}}^{-k\gamma \sqrt{T-t}\cdot x-k(r+ \frac{\gamma ^2}{2})(T-t)}\frac{1}{\sqrt{2 \pi }}{\mathrm{e}}^{-\frac{1}{2}x^2}\mathrm {d}x \nonumber \\&= {\tilde{Z}}_t^k {\mathrm{e}}^{-k(r+\frac{\gamma ^2}{2})(T-t)}\int _{d_2}^{d_1} \frac{1}{\sqrt{2\pi }}{\mathrm{e}}^{-\frac{1}{2}(x+k\gamma \sqrt{T-t})^2+\frac{k^2}{2} \gamma ^2(T-t)}\mathrm {d}x\nonumber \\&= {\tilde{Z}}_t^k {\mathrm{e}}^{-k(r+\frac{\gamma ^2}{2})(T-t)+\frac{k^2}{2} \gamma ^2(T-t)}\int _{d_2}^{d_1}\frac{1}{\sqrt{2\pi }}{\mathrm{e}}^{-\frac{1}{2} \underbrace{(x+k\gamma \sqrt{T-t})^2}_{=:y}}\mathrm {d}x\nonumber \\&={\tilde{Z}}_t^k {\mathrm{e}}^{-k(r+\frac{\gamma ^2}{2})(T-t)+\frac{k^2}{2} \gamma ^2(T-t)}\int _{d_2+k\gamma \sqrt{T-t}}^{d_1+k\gamma \sqrt{T-t}} \frac{1}{\sqrt{2\pi }}{\mathrm{e}}^{-\frac{1}{2}y^2}\mathrm {d}y\nonumber \\&= {\tilde{Z}}_t^k {\mathrm{e}}^{-k(r+\frac{\gamma ^2}{2})(T-t)+\frac{k^2}{2}\gamma ^2(T-t)}[N(d_1+k\gamma \sqrt{T-t})-N(d_2+k\gamma \sqrt{T-t})]. \end{aligned}$$
(34)

By application to (13), this leads to

$$\begin{aligned} {\mathbb {E}}[{\tilde{Z}}_TX_T^*]&={\mathbb {E}}\left[ \frac{\left( \frac{ \lambda ^*}{\beta }\right) ^{-1/c_1}{\tilde{Z}}_T^{\frac{c_1-1}{c_1}}}{ \beta }{1}_{\{0<\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] \\&\quad -{\mathbb {E}} \left[ \frac{\alpha X_0}{\beta }{\tilde{Z}}_T{1}_{\{0<\lambda ^*{\tilde{Z}}_T< v_{\mathrm{M}}'(x^*)\}}\right] \\&\quad + {\mathbb {E}}\left[ B{\tilde{Z}}_T{1}_{\{0<\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}} \right] \\&= \left( \frac{\lambda ^*}{\beta }\right) ^{-1/c_1}\frac{1}{\beta }{\mathrm{e}}^{ \frac{1-c_1}{c_1}\left( r+\frac{\gamma ^2}{2}\right) T+\frac{1}{2}\left( \frac{c_1-1}{c_1}\right) ^2\gamma ^2T}\left[ 1-N\left( d+\frac{c_1-1}{c_1} \gamma \sqrt{T}\right) \right] \\&\quad +\left( B-\frac{\alpha X_0}{\beta }\right) {\mathrm{e}}^{-rT}\left[ 1-N(d+\gamma \sqrt{T})\right] =X_0 \end{aligned}$$

as presented in Lemma 1. \(\square\)

Proof of Proposition 2:

$$\begin{aligned} {\mathbb {E}}\left[ X_T^*\right]&=\frac{1}{\beta }\left( \frac{\lambda ^*}{ \beta }\right) ^{-1/c_1}{\mathbb {E}}\left[ {\tilde{Z}}_T^{-1/c_1}{1}_{\{ \lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] +\left( B-\frac{\alpha X_0}{\beta }\right) {\mathbb {E}}\left[ {1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] \\&\overset{(34)}{=} \frac{1}{\beta }\left( \frac{ \lambda ^*}{\beta }\right) ^{-1/c_1}{\mathrm{e}}^{\frac{1}{c_1}\left( r+\frac{\gamma ^2}{2} \right) T+\frac{1}{2}\frac{\gamma ^2}{c_1^2}T}\left( 1-N\left( d-\frac{\gamma }{c_1} \sqrt{T}\right) \right) \\&\quad +\left( B-\frac{\alpha X_0}{\beta }\right) \left( 1-N\left( d\right) \right) \\ {\mathbb {E}}\left[ \left( X_T^*\right) ^2\right]&= \frac{1}{\beta ^2}\left( \frac{ \lambda ^*}{\beta }\right) ^{-2/c_1}{\mathbb {E}}\left[ {\tilde{Z}}_T^{-2/c_1}{1}_{ \{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] +\left( B-\frac{\alpha X_0}{\beta } \right) ^2 {\mathbb {E}}\left[ {1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}} \right] \\&\quad + 2\left( B-\frac{\alpha X_0}{\beta }\right) \frac{1}{\beta }\left( \frac{ \lambda ^*}{\beta }\right) ^{-1/c_1}{\mathbb {E}}\left[ {\tilde{Z}}_T^{-1/c_1}{1}_{ \{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] \\&\overset{(34)}{=} \frac{1}{\beta ^2}\left( \frac{ \lambda ^*}{\beta }\right) ^{-2/c_1}{\mathrm{e}}^{\frac{2}{c_1}\left( r+\frac{\gamma ^2}{2} \right) T+2\frac{\gamma ^2}{c_1^2}T}\left( 1-N\left( d-2\frac{\gamma }{c_1}\sqrt{T} \right) \right) \\&\quad + \left( B-\frac{\alpha X_0}{\beta }\right) ^2\left( 1-N\left( d\right) \right) \\&\quad + 2\left( B-\frac{\alpha X_0}{\beta }\right) \frac{1}{\beta }\left( \frac{\lambda ^*}{\beta }\right) ^{-1/c_1}{\mathrm{e}}^{ \frac{1}{c_1}\left( r+\frac{\gamma ^2}{2}\right) T+\frac{1}{2}\frac{\gamma ^2}{c_1^2}T} \left( 1-N\left( d-\frac{\gamma }{c_1}\sqrt{T}\right) \right) \end{aligned}$$

The proposition follows with \({\mathbb {V}}\left[ X_T^*\right] ={\mathbb {E}}\left[ \left( X_T^*\right) ^2\right] - \left( {\mathbb {E}}\left[ X_T^*\right] \right) ^2\). \(\square\)

Proof of Lemma 2:

Notice that \(x^*>B\) and \(\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\iff X_T^*>x^*.\) Hence, we can calculate

$$\begin{aligned} \phi _{\mathrm{M}}(\alpha ,\beta )&={\mathbb {E}}\left[ \frac{1}{1-c_1}\left( \alpha X_0+\beta \left( \left( \frac{\left( \frac{\lambda ^*{\tilde{Z}}_T}{ \beta }\right) ^{-1/c_1}-\alpha X_0}{\beta }+B\right) {1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}-B\right) ^+ \right) ^{1-c_1}\right] \\&=\frac{1}{1-c_1} {\mathbb {E}}\left[ \left( \alpha X_0+\beta \left( \frac{\left( \frac{\lambda ^*{\tilde{Z}}_T}{\beta }\right) ^{-1/c_1}- \alpha X_0}{\beta }+B-B\right) \right) ^{1-c_1}{1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}} \right] \\&\quad +\frac{1}{1-c_1} {\mathbb {E}}\left[ \left( \alpha X_0\right) ^{1-c_1}{1}_{ \{\lambda ^*{\tilde{Z}}_T>v_{\mathrm{M}}'(x^*)\}}\right] \\&= \frac{1}{1-c_1}\left( \frac{\lambda ^*}{\beta }\right) ^{\frac{c_1-1}{c_1}}{ \mathbb {E}}\left[ {\tilde{Z}}_T^{\frac{c_1-1}{c_1}}{1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}' (x^*)\}}\right] +\frac{1}{1-c_1}(\alpha X_0)^{1-c_1}{\mathbb {E}}\left[ {1}_{\{ \lambda ^*{\tilde{Z}}_T>v_{\mathrm{M}}'(x^*)\}}\right] \\&\overset{(34)}{=} \frac{1}{1-c_1}\left( \frac{ \lambda ^*}{\beta }\right) ^{\frac{c_1-1}{c_1}}{\mathrm{e}}^{\frac{1-c_1}{c_1}\left( r+ \frac{\gamma ^2}{2}\right) T+\left( \frac{c_1-1}{c_1}\right) ^2\frac{\gamma ^2}{2}T} \left( 1-N\left( d+\frac{c_1-1}{c_1}\gamma \sqrt{T}\right) \right) \\&\quad +\frac{1}{1-c_1}(\alpha X_0)^{1-c_1}N(d) \\ \phi _{\mathrm{I}}(\alpha ,\beta )&={\mathbb {E}}\left[ \frac{1}{1-c_2} \left( X_T^*-\beta \left( X_T^*-B\right) ^+\right) ^{1-c_2}\right] \\&={\mathbb {E}}\left[ \frac{1}{1-c_2}\left( \left( \left( \frac{\left( \frac{ \lambda ^*{\tilde{Z}}_T}{\beta }\right) ^{-1/c_1}-\alpha X_0}{\beta }+B \right) \left( 1-\beta \right) +\beta B\right) {1}_{\{\lambda ^*{\tilde{Z}}_T< v_{\mathrm{M}}'(x^*)\}}\right) ^{1-c_2}\right] \\&=\frac{1}{1-c_2} {\mathbb {E}}\left[ \left( (1-\beta ) \frac{\left( \frac{\lambda ^*{\tilde{Z}}_T}{\beta }\right) ^{-1/c_1}-\alpha X_0}{\beta }+B\right) ^{1-c_2}{1}_{\{\lambda ^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x^*)\}}\right] \end{aligned}$$

\(\square\)

Proof of Lemma 3:

Let \(\alpha , \beta\) and the optimal payoff \(X_T(\alpha ,\beta )\) be given. Now, let us choose \((\alpha ',\beta ')>(\alpha ,\beta )\), but the same \(X_T(\alpha ,\beta )\). Then, the budget constraint is fulfilled and

$$\begin{aligned} U_{\mathrm{M}}(M_T(\alpha ',\beta ',X_T(\alpha ,\beta )))>U_{\mathrm{M}}(M_T(\alpha , \beta ,X_T(\alpha ,\beta )))=u_{\mathrm{M}}(X_T(\alpha ,\beta )). \end{aligned}$$

After taking expectations and then optimizing the left-hand side in \(X_T\) to find the optimal \(X_T(\alpha ',\beta ')\), we learn that the left-hand side must increase, giving us \(\phi _{\mathrm{M}}(\alpha ',\beta ')>\phi _{\mathrm{M}}(\alpha ,\beta )\). \(\square\)

Proof of Proposition 3

Let \(\alpha >0\) be arbitrary, but fixed. The main idea of the proof is to show that for a small \(\beta _2\) and \(\beta _1\rightarrow 0\) the optimal payoff \(X_{\beta _1}^*\) is first-order stochastically dominated by \(X_{\beta _2}^*\) which means that \({\mathbb {E}}[u(X_{\beta _1})]\le {\mathbb {E}}[u(X_{\beta _2})]\) for all increasing utility functions u. The proof is structured in six parts. We show:

  1. (1)

    \(x_{\beta }^*\) is a decreasing and \(v_{\mathrm{M}}'(x_{\beta }^*)\) is an increasing function in \({\beta }\).

  2. (2)

    \(\lambda _{\beta }^*\) is an increasing function in \(\beta\).

  3. (3)

    \(\frac{v_{\mathrm{M}}'(x_{\beta }^*)}{\beta }\) converges to a constant for \(\beta \rightarrow 0\).

  4. (4)

    \(\frac{\lambda _{\beta }^*}{\beta }\) and \(\frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\) are decreasing functions in \(\beta\), for small \(\beta\).

  5. (5)

    Estimates for help functions.

  6. (6)

    Stochastic dominance of \(X_{\beta _2}^*\) over \(X_{\beta _1}^*\), for small \(\beta _2\) and \(\beta _1\rightarrow 0\).

(1) \(x_{\beta }^*\) is a decreasing and \(\mathbf {v_{{M}}'}{(\mathbf {x}_{\beta }^*)}\) is an increasing function in \({\beta }\).

Let us define \(u_{\mathrm{M}}^{\beta }(x)=\frac{1}{1-c_1}\left( \alpha X_0+\beta (x-B)^+\right) ^{1-c_1}\), \(x>0\) arbitrary. It follows:

  1. (i)

    \(u_{\mathrm{M}}^{\beta _1}(x)<u_{\mathrm{M}}^{\beta _2}(x) \quad \forall \beta _1<\beta _2, \forall x>B\)

  2. (ii)

    \(\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _1}(x)>\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _2}(x) \quad \forall \beta _1<\beta _2, \forall x>B\)

  3. (iii)

    \(\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta }> 0\quad \forall x>B\)

  4. (iv)

    \(\frac{\partial ^2}{\partial ^2 x}u_{\mathrm{M}}^{\beta }(x)< 0\quad \forall x>B\)

Let \(\beta _1<\beta _2\). From the definition of \(x^*\), we know:

$$\begin{aligned}&u_{\mathrm{M}}^{\beta _1}(0)+\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _1}(x)|_{x_{\beta _1}^*}\cdot x_{\beta _1}^*=u_{\mathrm{M}}^{\beta _1}(x_{\beta _1}^*)\\&u_{\mathrm{M}}^{\beta _2}(0)+\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _2}(x)|_{x_{\beta _2}^*}\cdot x_{\beta _2}^*=u_{\mathrm{M}}^{\beta _2}(x_{\beta _2}^*) \end{aligned}$$

First, we show that \(x_{\beta }^*\) is decreasing in \(\beta\). We assume \(x_{\beta _1}^*<x_{\beta _2}^*\). Then, it is

$$\begin{aligned} u_{\mathrm{M}}^{\beta _2}(0)+\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _2}(x)|_{x_{\beta _2}^*}\cdot x_{\beta _1}^*>u_{\mathrm{M}}^{\beta _2}(x_{\beta _1}^*)\overset{\text {(i)}}{>}u_{\mathrm{M}}^{\beta _1}(x_{\beta _1}^*)=u_{\mathrm{M}}^{\beta _1}(0)+\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _1}(x)|_{x_{\beta _1}^*}\cdot x_{\beta _1}^*\\ \overset{u_{\mathrm{M}}^{\beta _1}(0)=u_{\mathrm{M}}^{\beta _2}(0)}{\iff }\frac{\partial }{\partial x} u_{\mathrm{M}}^{\beta _2}(x_{\beta _2}^*)>\frac{\partial }{\partial x} u_{\mathrm{M}}^{\beta _1}(x_{\beta _1}^*)\overset{\text {(iv)}}{>}\frac{\partial }{\partial x}u_{\mathrm{M}}^{\beta _1}(x_{\beta _2}^*)\overset{\text {(ii)}}{>}\frac{\partial }{\partial x} u_{\mathrm{M}}^{\beta _2}(x_{\beta _2}^*) \end{aligned}$$

which is a contradiction. Hence, it must be \(x_{\beta _1}^*>x_{\beta _2}^*\), i.e., \(x_{\beta }^*\) is decreasing in \(\beta\). Let \(v_{\mathrm{M}}\) be the concavification of \(u_{\mathrm{M}}^{\beta }\). Since the concavification \(v_{\mathrm{M}}\) is a concave function, it follows \(v_{\mathrm{M}}'(x_{\beta _2}^*)>v_{\mathrm{M}}'(x_{\beta _1}^*)\), such that \(v_{\mathrm{M}}'(x_{\beta }^*)\) is an increasing function of \(\beta\).

(2) \(\lambda _{\beta }^*\) is an increasing function in \(\beta\).

We look at Eq. (15):

$$\begin{aligned}&\overbrace{\underbrace{\left( \frac{\lambda _{\beta }^*}{\beta }\right) ^{-1/c_1} \frac{1}{\beta }}_{\text{ Decreasing } \text{ in } \lambda _{\beta }^*}}^{\text{ Increasing } \text{ in } \beta \text{(for } c_1<1\text{) }}\cdot E_1\cdot \overbrace{\underbrace{\left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{ v_{\mathrm{M}}'(x_{\beta }^*)}\right) +\varepsilon _1\right) \right] }_{\text{ Decreasing } \text{ in } \lambda _{\beta }^*}}^{\text{ Increasing } \text{ in } \beta }\nonumber \\&+\underbrace{\left( B-\frac{\alpha X_0}{\beta }\right) }_{\text{ Increasing } \text{ in } \beta }\cdot E_2\cdot \underbrace{\left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{ \beta }^*)}\right) +\varepsilon _2\right) \right] }_{\text{ Increasing } \text{ in } \beta \text{ and } \text{ decreasing } \text{ in } \lambda _{\beta }^*}=\underbrace{X_0}_{\text{ Constant }} \end{aligned}$$
(35)

The right-hand side of the upper equation is constant while the left-hand side appears to be increasing in \(\beta\) (remember that \(v_{\mathrm{M}}'(x_{\beta }^*)\) is increasing in \(\beta\)) for \(c_1<1\) (while assuming \(\lambda _{\beta }^*\) to be constant) and simultaneously decreasing in \(\lambda _{\beta }^*\) (while assuming \(\beta\) to be constant). Therefore, \(\lambda _{\beta }^*\) is increasing in \(\beta\). This implies that \(\frac{\lambda _{\beta }^*}{\beta }\) is monotone for small \(\beta\) which is relevant for Step 4).

(3) \({\frac{{\mathbf {v_M'}}(x_{\beta }^*)}{\beta }}\) converges to a constant for \(\beta {\rightarrow }\) 0.

Here we show that \(v_{\mathrm{M}}'(x_{\beta }^*)\sim \beta\), which means \(\lim \nolimits _{\beta \rightarrow 0}\frac{v_{\mathrm{M}}'(x_{\beta }^*)}{\beta }=a\) where \(a>0\) is a constant.

From (12), the definition of \(x_{\beta }^*\), we know

$$\begin{aligned}&\frac{1}{1-c_1}\left[ (\alpha X_0+\beta (x_{\beta }^*-B))^{1-c_1}-(\alpha X_0)^{1-c_1}\right] =\beta x_{\beta }^*\cdot (\alpha X_0+\beta (x_{\beta }^*-B))^{-c_1}\\\iff & {} \left[ \frac{\alpha X_0+(\beta x_{\beta }^*-\beta B)-(\alpha X_0+(\beta x_{\beta }^*-\beta B))^{c_1}\cdot (\alpha X_0)^{1-c_1}}{\beta x_{\beta }^*}\right] =1-c_1. \end{aligned}$$

For \(\beta \rightarrow 0\), there are three different possible cases for \(\beta x_{\beta }^*\).

  • \(\beta x_{\beta }*\rightarrow \infty\)

  • \(\beta x_{\beta }*\rightarrow 0\)

  • \(\beta x_{\beta }*\rightarrow {\hbox {const.}}>0\)

For the first two cases, we differentiate the left side of the upper equation w.r.t. \((\beta x_{\beta }*)\) and apply the rule of l’Hopital. Hence, for \(\beta \rightarrow 0\) it must hold

$$\begin{aligned} \lim \limits _{\beta \rightarrow 0}\frac{1-(\alpha X_0)^{1-c_1}\cdot c_1\cdot (\alpha X_0+(\beta x_{\beta }^*-\beta B))^{c_1-1}}{1}=1-c_1. \end{aligned}$$
  • For \(\beta x_{\beta }*\rightarrow \infty\), this leads to \(1\ne 1-c_1\).

  • For \(\beta x_{\beta }*\rightarrow 0,\) this leads to \(1-c_1=1-c_1\). \(\checkmark\)

The third case, \(\beta x_{\beta }*\rightarrow {\hbox {const.}}>0\), cannot be true, because the unique limit cannot be 0 and a constant greater than 0 simultaneously. Therefore, \(\lim \nolimits _{\beta \rightarrow 0}\beta x_{\beta }^*= 0\).

Since \(v_{\mathrm{M}}'(x_{\beta }^*)=\beta \cdot (\alpha X_0+\beta (x_{\beta }^*-B))^{-c_1}\), we obtain

$$\begin{aligned} \lim \limits _{\beta \rightarrow 0}\frac{v_{\mathrm{M}}'(x_{\beta }^*)}{\beta }=\lim \limits _{\beta \rightarrow 0}(\alpha X_0+\beta x_{\beta }^*-\beta B)^{-c_1}=(\alpha X_0)^{-c_1} \end{aligned}$$

where \((\alpha X_0)^{-c_1}\) is constant. Hence, \(v_{\mathrm{M}}'(x_{\beta }^*)\sim \beta\) as prescribed.

(4) \({\frac{{\varvec{\lambda }}_{\beta }^*}{\beta }}\) and \({\frac{{\varvec{\lambda }}_{\beta }^*}{{\mathbf {v_M}}'({\mathbf {x}}_{\beta }^*)}}\) are decreasing functions in \({\beta }\), for small \({\beta }\).

We define \(y_{\beta }=\frac{\lambda _{\beta }^*}{\beta }\) and use the result from Step 3)

$$\begin{aligned} \lim \limits _{\beta \rightarrow 0}\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) =a\cdot \lim \limits _{\beta \rightarrow 0}\left( \frac{\lambda _{\beta }^*}{\beta }\right) \text{ with } a>0. \end{aligned}$$
(36)

Furthermore, let

$$\begin{aligned} E_3={\mathrm{e}}^{-\frac{c_1-1}{c_1}\left( r+\frac{\gamma ^2}{2} \right) T+\frac{1}{2}\left( \frac{c_1-1}{c_1}\right) ^2\gamma ^2T}, \varepsilon _1=\frac{c_1-1}{c_1}\gamma \sqrt{T}, E_4={\mathrm{e}}^{-rT}, \varepsilon _2=\gamma \sqrt{T} \end{aligned}$$

and

$$\begin{aligned} d\left( \frac{\lambda ^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) =\frac{{\hbox {log}}\left( \frac{ \lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) -(r+\frac{\gamma ^2}{2})T}{\gamma \sqrt{T}}. \end{aligned}$$

Then, using (15) we get

$$\begin{aligned} L(\beta ):= & {} E_3\cdot y_{\beta }^{-1/c_1}\cdot \left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{ \beta }^*)}\right) +\varepsilon _1\right) \right] -\alpha X_0\cdot E_4\cdot \left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) + \varepsilon _2\right) \right] \nonumber \\= & {} \beta \cdot \left( X_0-E_4\cdot B\cdot \left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)} \right) +\varepsilon _2\right) \right] \right) =:R(\beta ).\nonumber \\ \overset{(36)}{\Rightarrow }\lim \limits _{\beta \rightarrow 0}L(\beta )= & {} E_3\cdot \lim \limits _{\beta \rightarrow 0}\left( \frac{1-N(d(a\cdot y_{\beta })+\varepsilon _1)}{y_{\beta }^{1/c_1}}\right) -\alpha X_0 \cdot E_4\cdot \lim \limits _{\beta \rightarrow 0}\left( 1-N(d(a\cdot y_{\beta })+\varepsilon _2)\right) \nonumber \\= & {} \lim \limits _{\beta \rightarrow 0}\left( \beta \cdot (X_0-E_4\cdot B\cdot [1-N(d(a\cdot y_{\beta })+\varepsilon _2)])\right) =\lim \limits _{\beta \rightarrow 0}R(\beta ) \end{aligned}$$
(37)

Looking at Eq. (37) and recalling that \(y_{\beta }\) is monotone for small \(\beta\), we obtain:

  • Assume \(y_{\beta }\downarrow 0\): Then, \(\lim \nolimits _{\beta \rightarrow 0}L(\beta )=E_3\cdot \infty -\alpha X_0\cdot E_4\ne 0=\lim \nolimits _{\beta \rightarrow 0}R(\beta )\Rightarrow\) Contradiction to (37)

  • Assume \(y_{\beta }\uparrow \infty\): Then, \(\lim \nolimits _{\beta \rightarrow 0}L(\beta )=E_3\cdot 0-0=0=\lim \nolimits _{\beta \rightarrow 0}R(\beta )\) \(\checkmark\)

Analogously to the argumentation in Step 3, \(y_{\beta }\rightarrow y^*>0\) cannot hold, because \(y_{\beta }\) cannot converge to \(\infty\) and a constant greater than 0 simultaneously. Hence, \(\lim \nolimits _{\beta \rightarrow 0}y_{\beta }=\infty\), and thus, for small \(\beta\), \(\frac{\lambda _{\beta }^*}{\beta }\) and \(\frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\) are decreasing in \(\beta\).

(5) Estimates for help functions.

Let \(f(\beta ):=\left( \frac{\lambda _{\beta }^*}{\beta }\right) ^{-1/c_1}\cdot \frac{1}{\beta }\). Using Eq. (15) and the fact that \(\frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\) is decreasing in \(\beta\) for small \(\beta\), the terms \(\left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) +\varepsilon _1\right) \right]\), \(\left[ 1-N\left( d\left( \frac{\lambda _{\beta }^*}{v_{\mathrm{M}}'(x_{\beta }^*)}\right) +\varepsilon _2\right) \right]\) and \(\left( B-\frac{\alpha X_0}{\beta }\right)\) are increasing in \(\beta\). It follows that \(f(\beta )\) is decreasing in \(\beta\) for small \(\beta\).

Let \(\beta _1<\beta _2\) be small and define \(g(\beta _1,\beta _2):=\left( \frac{\lambda _{\beta _2}^*}{\lambda _{\beta _1}^*}\cdot \frac{\beta _1}{\beta _2}\right) ^{1/c_1}\). Then, it holds

  1. (I)

    \(g(\beta _1,\beta _2)<1\), as direct result of \(\frac{\lambda _{\beta _2}^*}{\beta _2}<\frac{\lambda _{\beta _1}^*}{\beta _1}\).

  2. (II)

    \(\beta _1-\beta _2\cdot g(\beta _1,\beta _2)<0\iff \frac{\beta _1}{\beta _2}<g(\beta _1,\beta _2)\) which follows from \(f(\beta _2)<f(\beta _1)\).

(6) Stochastic dominance of \(X_{\beta _2}^*\) over \(X_{\beta _1}^*\), for small \(\beta _2\) and \(\beta _1\rightarrow 0\).

In the final step, we now look at the cumulative distribution function of the optimal payoff

$$\begin{aligned} X_{\beta }^*=\left[ \frac{\left( \frac{\lambda _{\beta }^*{\tilde{Z}}_T}{\beta }\right) ^{-1/c_1}-\alpha X_0}{\beta }+B\right] {1}_{\{\lambda _{\beta }^*{\tilde{Z}}_T<v_{\mathrm{M}}'(x_{\beta }^*)\}}. \end{aligned}$$

Remember that \(X_{\beta }^*\) never takes values between 0 and \(x_{\beta }^*>B\). Let \(x>x_{\beta }^*\) be arbitrary. Then:

$$\begin{aligned} X_{\beta }^*\le x&\iff \left( \frac{\beta }{\lambda _{\beta }^*{\tilde{Z}}_T}\right) ^{1/c_1}\le \beta (x-B)+\alpha X_0 \\&\iff \frac{\beta }{\lambda _{\beta }^*{\tilde{Z}}_T}\le (\alpha X_0+\beta (x-B))^{c_1}\\&\iff {\tilde{Z}}_T\ge \frac{\beta }{\lambda _{\beta }^*}\cdot (\alpha X_0+\beta (x-B))^{-c_1}=:h_{\beta }(x) \end{aligned}$$

Hence, for any \(x>x_{\beta }^*\) the cumulative distribution function is given by

$$\begin{aligned} F_{X_{\beta }^*}(x)={\mathbb {P}}\left( {\tilde{Z}}_T\ge h_{\beta }(x)\right) . \end{aligned}$$

Let \(\beta _1<\beta _2\) be small and \(x\ge x_{\beta _1}^*>x_{\beta _2}^*\) (where the last inequality comes from Step 1). Then,

$$\begin{aligned} F_{X_{\beta _1}^*}(x)\ge F_{X_{\beta _2}^*}(x)&\iff h_{\beta _1}(x)\le h_{\beta _2}(x)\\&\iff \frac{\beta _1}{\lambda _{\beta _1}^*}\cdot (\alpha X_0+\beta _1(x-B))^{-c_1}\le \frac{\beta _2}{\lambda _{\beta _2}^*}\cdot (\alpha X_0+\beta _2(x-B))^{-c_1}\\&\iff \frac{\lambda _{\beta _2}^*}{\beta _2}\cdot (\alpha X_0+\beta _2(x-B))^{c_1}\le \frac{\lambda _{\beta _1}^*}{\beta _1}\cdot (\alpha X_0+\beta _1(x-B))^{c_1}\\&\iff \left( \frac{\lambda _{\beta _2}^*}{\beta _2}\right) ^{1/c_1}\cdot (\alpha X_0+\beta _2(x-B))\le \left( \frac{\lambda _{\beta _1}^*}{\beta _1}\right) ^{1/c_1}\cdot (\alpha X_0+\beta _1(x-B))\\&\iff g(\beta _1,\beta _2)\cdot (\alpha X_0+\beta _2(x-B))\le \alpha X_0+\beta _1(x-B)\\&\iff (g(\beta _1,\beta _2)-1)\cdot \alpha X_0\le (\beta _1-\beta _2g(\beta _1,\beta _2))(x-B)\\&\iff x\le B+\frac{g(\beta _1,\beta _2)-1}{\beta _1-\beta _2\cdot g(\beta _1,\beta _2)}\cdot \alpha X_0=:S(\beta _1,\beta _2) \end{aligned}$$

Now we show that \(S(\beta _1,\beta _2)\rightarrow \infty\) for \(\beta _1\rightarrow 0\).

$$\begin{aligned} \frac{1-g(\beta _1,\beta _2)}{\beta _2\cdot g(\beta _1,\beta _2)-\beta _1} \uparrow \infty \text{ for } \beta _1\rightarrow 0&\iff \frac{\beta _2\cdot g(\beta _1,\beta _2)-\beta _1}{1-g(\beta _1,\beta _2)}\downarrow 0 \text{ for } \beta _1\rightarrow 0 \nonumber \\&\iff -\beta _2+\frac{\beta _2-\beta _1}{1-g(\beta _1,\beta _2)}\downarrow 0 \text{ for } \beta _1\rightarrow 0 \end{aligned}$$
(38)

In Step 4, we have seen that \(\frac{\lambda _{\beta }^*}{\beta }\rightarrow \infty\) for \(\beta \rightarrow 0\). Hence, \(\frac{\beta _1}{\lambda _{\beta _1}^*}\downarrow 0\) for \(\beta _1\rightarrow 0\). Therefore, we know

$$\begin{aligned} g(\beta _1,\beta _2)\downarrow 0 \text{ for } \beta _1\rightarrow 0. \end{aligned}$$

(I) and (II) in Step 5 imply that \(-\beta _2+\frac{\beta _2-\beta _1}{1-g(\beta _1,\beta _2)}\) is always positive. Thus, Eq. (38) converges to 0 from above for \(\beta _1\rightarrow 0\), such that \(S(\beta _1,\beta _2) \rightarrow \infty\) for \(\beta _1\rightarrow 0\) and small \(\beta _2\).

Hence, for \(\beta _1\rightarrow 0\) and small \(\beta _2\) it holds

$$\begin{aligned} F_{X_{\beta _1}^*}(x)\ge F_{X_{\beta _2}^*}(x) \quad \forall x\in \varOmega _1=[x_{\beta _1}^*,\infty ), \end{aligned}$$

i.e., \(X_{\beta _2}^*\) dominates \(X_{\beta _1}^*\) on \(\varOmega _1\) by first-order stochastic dominance. Therefore,

$$\begin{aligned} {\mathbb {E}}\left[ {1}_{\varOmega _1}(X_{\beta _1}^*)\cdot u(X_{\beta _1}^*)\right] \le {\mathbb {E}}\left[ {1}_{\varOmega _1}(X_{\beta _2}^*)\cdot u(X_{\beta _2}^*)\right] \quad \forall \text{ increasing } \text{ functions } u. \end{aligned}$$

We thus conclude

$$\begin{aligned} {\mathbb {E}}\left[ u(X_{\beta _1}^*)\right] ={\mathbb {E}}\left[ {1}_{ \varOmega _1}(X_{\beta _1}^*)\cdot u(X_{\beta _1}^*)\right] \le {\mathbb {E}}\left[ {1}_{\varOmega _1}(X_{\beta _2}^*)\cdot u(X_{\beta _2}^*)\right] \le {\mathbb {E}}\left[ u(X_{\beta _2}^*)\right] . \end{aligned}$$

\(\square\)

Proof of Lemma 4:

Let \(({\hat{\alpha }},{\hat{\beta }})\notin P\). Set \(\phi _\mathrm{min}= \phi _{\mathrm{M}}({\hat{\alpha }},{\hat{\beta }})\) and let \((\alpha ,\beta )\) be the solution of the corresponding problem (28). As \(({\hat{\alpha }},{\hat{\beta }})\) is admissible for (28) and \((\alpha ,\beta )\) the optimal solution, we conclude

$$\begin{aligned} \phi _{\mathrm{I}}(\alpha ,\beta )\ge & {} \phi _{\mathrm{I}}({\hat{\alpha }},{\hat{\beta }}). \end{aligned}$$

As \(({\hat{\alpha }},{\hat{\beta }})\notin P\), we know that \(({\hat{\alpha }},{\hat{\beta }})\) cannot be an optimal solution for (28). Hence, the inequality must be strict. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Anel, M., Höhn, V., Seco, L. et al. Optimal fee structures in hedge funds. J Asset Manag 19, 522–542 (2018). https://doi.org/10.1057/s41260-018-0094-7

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41260-018-0094-7

Keywords

Navigation