Skip to main content
Log in

Exchange and Delocalization Effects in [Fe6S6]2+ Superclusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A theoretical study of Heisenberg exchange and double exchange (delocalization) effects in the iron-sulphur supercluster is presented. Such clusters can play important role in biological systems (proteins and enzymes) acting as so-called active centres. The cluster with valence 2+ can be modelled by two Fe(III) and four Fe(II) ions. An idealized structure of double cubane has been considered instead of a more realistic defected double cubane structure of lower symmetry. Energies of the lowest spin states have been calculated numerically depending on the Heisenberg exchange J i and double exchange b parameters. Possible spin ground states (S=0, 1, 2, 3, 4, 5) have been predicted. The ground state of a given total spin Sis usually achieved for the intermediate spin value of S 56=4 in the case of fully antiferromagnetic as well as partially ferromagnetic spin interactions. In the case of no double exchange, the ground state with the total spin S=3 should always be observed, while a nonzero hopping effect results in narrowing a parameter region of the ground state. If the double exchange is taken into account, then the spin values depend on the Heisenberg integrals. The model results can be applied in order to interpret many structural and magnetic properties of proteins and enzymes possessing the Fe-S active centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Lowenberg (ed.), Iron-Sulfur Proteins, Vols. 1-3 (Academic Press, New York, 1973-1977).

    Google Scholar 

  2. P. Harrison (ed.), Metalloproteins(MacMillan, London, 1985), Parts 1 and 2.

    Google Scholar 

  3. H. Matsubara, Y. Katsube, and K. Wada (eds.), Iron-Sulfur Protein Research(Springer, Berlin, 1987).

    Google Scholar 

  4. R. Cammack, D. P. E. Dickson, and C. E. Johnson, inW. Lovenberg (ed.), Iron-Sulfur Proteins, Vol. 3 (Academic Press, New York, 1977), p. 283.

    Google Scholar 

  5. C. W. Carter, J. Kraut, S. T. Freer, and R. A. Alden (1974). J. Biol. Chem. 249, 6339.

    PubMed  Google Scholar 

  6. D. R. Breiter, T. E. Meyer, I. Rayment, and H. M. Holden (1991). J. Biol. Chem. 266, 18660.

    PubMed  Google Scholar 

  7. I. Rayment, G. Wesenberg, T. E. Meyer, M. A. Cusanovich, and H. M. Holden (1992). J. Biol. Chem. 228, 672.

    Google Scholar 

  8. A. J. Pierik, R. B. G. Wolbert, P. H. A. Mutsaers, W. R. Hagen, and C. Veeger (1992). Eur. J. Biochem. 206, 697.

    PubMed  Google Scholar 

  9. J. P. W. G. Stokkerman, A. J. Pierik, R. B. G. Wolbert, W. R. Hagen, W. M. A. M. van Dongen, and C. Veeger (1993). Eur. J. Biochem. 208, 435.

    Google Scholar 

  10. H. G. Wood, S. W. Ragsdale, and E. Pezaccka (1986). Trends Biochem. Sci. 11, 14.

    Google Scholar 

  11. H. G. Wood, S. W. Ragsdale, and E. Pezaccka (1986). FEMS Microbiol. Rev. 39, 345.

    Google Scholar 

  12. L. G. Ljungdal (1986). Ann. Rev. Microbiol. 40, 415.

    Google Scholar 

  13. A. Müller, Proc. Int. Conf. on Metal Ions in Biological Systems(Florence, Italy, 1994).

  14. A. J. Pierik, M. E. Eldridge, S. P. J. Albracht, B. E. Smith, and R. R. Eady, ibid.

  15. R. N. F. Thorneley, ibid.

  16. J. Kimand and D. C. Rees (1992). Science 257, 1677.

    PubMed  Google Scholar 

  17. C. R. Kissinger, E. T. Adman, L. C. Sieker, and L. H. Jensen (1988). J. Amer. Chem. Soc. 110, 8721.

    Google Scholar 

  18. B. C. Antanaitis and T. H. Moss (1975). B.B.A. 405, 262.

    Google Scholar 

  19. H. Blum, J. C. Salerno, R. C. Prince, J. S. Leigh, and T. Ohnishi (1977). Biophys. J. 20, 23.

    PubMed  Google Scholar 

  20. L. Noodleman (1988). Inorg. Chem. 27, 3677.

    Google Scholar 

  21. L. Noodleman (1991). Inorg. Chem. 30, 246.

    Google Scholar 

  22. L. Noodleman (1991). Inorg. Chem. 30, 256.

    Google Scholar 

  23. M. Belinskii (1993). Chem. Phys. Lett. 203, 1359.

    Google Scholar 

  24. M. Belinskii (1993). Chem. Phys. 172, 189.

    Google Scholar 

  25. M. Belinskii (1993). Chem. Phys. 172, 213.

    Google Scholar 

  26. M. Belinskii (1993). Chem. Phys. 173, 27.

    Google Scholar 

  27. M. Belinskii (1993). Chem. Phys. 176, 15.

    Google Scholar 

  28. M. Belinskii (1993). Chem. Phys. 176, 37.

    Google Scholar 

  29. M. Belinskii (1994). Chem. Phys. 189, 451.

    Google Scholar 

  30. J. Kim and D. C. Rees (1992). Nature 360, 553.

    Google Scholar 

  31. M. Czerwiński and J. Dąbrowski (1995). J. Inorg. Biochem. 59, 256.

    Google Scholar 

  32. M. Czerwiński and J. Dąbrowski (1996). Chem. Phys. 213, 45.

    Google Scholar 

  33. M. Czerwiński and J. Dąbrowski (1997). Mol. Phys. 90, 445.

    Google Scholar 

  34. M. Czerwiński and J. Dabrowski (1998). J. Molec. Struct. (Theochem) 432, 15.

    Google Scholar 

  35. M. Matusiewicz, M.Czerwiński, J. Kasperczyk, and I. V. Kityk (1999). J. Chem. Phys. 111, 6446.

    Google Scholar 

  36. D. Coucouvanis, M. G. Kanatzidis, A. Salifoglou, and W. R. Dunham (1987). J. Amer. Chem. Soc. 107, 952.

    Google Scholar 

  37. W. R. Hagen, A. J. Pierik, and C. J. Veeger (1989). J. Chem. Soc. Faraday Trans. 85, 4083.

    Google Scholar 

  38. M. Krockel, A. X. Trautwein, M. Grodzicki, V. Papaefthymiou, A. Kostikas, A. Arendsen, W. R. Hagen, and S. Pohl (1995). J. Inorg. Biochem. 59, 568.

    Google Scholar 

  39. A. J. Pierik, W. R. Hagen, W. R. Dunham, and R. H. Sands (1992). Eur. J. Biochem. 206, 705.

    PubMed  Google Scholar 

  40. M. G. Kanatzidis, W. R. Hagen, W. R. Dunham, R. K. Lester, and D. Coucovanis (1985). J. Amer. Chem. Soc. 107, 953.

    Google Scholar 

  41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, Revision C.3 (Gaussian, Inc., Pittsburgh, PA, 1995).

    Google Scholar 

  42. M. Czerwiński and M. Matusiewicz (1998). Computer package “Heisenberg Mixed Valence Calculation (HMVC),” Revision A3.

  43. R. S. Mulliken (1955). J. Chem. Phys. 23, 1833.

    Google Scholar 

  44. M. Czerwiński (1999). Int. J. Quantum Chem. 72, 39.

    Google Scholar 

  45. A. P. Jucys and A. A. Badzaitis, Theory of Angular Momentum in Quantum Mechanics(Moklas, Vilnius, 1977), p. 175, in Russian.

    Google Scholar 

  46. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules(Oxford University Press, Oxford, 1989).

    Google Scholar 

  47. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Google Scholar 

  48. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Google Scholar 

  49. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Google Scholar 

  50. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 786.

    Google Scholar 

  51. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Google Scholar 

  52. J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    Google Scholar 

  53. C. Zener (1951). Phys. Rev. 118, 141.

    Google Scholar 

  54. P. W. Anderson and H. Hasegawa (1955). Phys. Rev. 100, 675.

    Google Scholar 

  55. P. G. de Gennes (1960). Phys. Rev. 118, 141.

    Google Scholar 

  56. G. Blondin and J.-J. Girerd (1990). Chem. Rev. 90, 1359.

    Google Scholar 

  57. J.-J. Girerd and J.-P. Launay (1983). Chem. Phys. 74, 217.

    Google Scholar 

  58. D. Gatteschi and B. S Tsukerblat (1993). Mol. Phys. 79, 121.

    Google Scholar 

  59. S. A. Borshch and I. N. Kotov (1991). Chem. Phys. 187, 149.

    Google Scholar 

  60. V. J. Gamurar, S. N. Ghifeisman, V. P.Coropceanu, and A. V. Palii (1995). Zh. Strukt. Khim. 36, 748.

    Google Scholar 

  61. V. P.Coropceanu, F. G. Paldi, S. I. Boldyrev, and V. J. Gamurar (1997). Chem. Phys. 219, 1.

    Google Scholar 

  62. J. J. Borras-Almenar, J. M. Clemente, E. Coronado, A. V. Palii, and B. S. Tsukerblat (1996). J. Chem. Phys. 105, 6892.

    Google Scholar 

  63. G. C. Papefthymiou, E. J. Laskowski, S. Frota-Pessoa, R. B. Frankel, and R. H. Holm (1982). Inorg. Chem. 21, 1723.

    Google Scholar 

  64. P. Barbaro, A. Bencini, I. Bertini, F. Briganti, and S. Midollini (1990). J. Amer. Chem. Soc. 112, 7238.

    Google Scholar 

  65. J. R. Hart, A. K. Rappe, S. M. Gorun, and T. H. Upton (1992). Inorg. Chem. 31, 5254.

    Google Scholar 

  66. G. Blondin and J. J. Girerd (1990). Chem. Rev. 90, 1359.

    Google Scholar 

  67. R. H. Sands and W. R. Dunham (1975). Quart. Rev. Biophys. 7, 443.

    Google Scholar 

  68. P. G. Debrunner (1990). Hyperfine Interactions 53, 21.

    Google Scholar 

  69. P. Bertrand, B. Guigliarelli, and C. More (1991). New J. Chem. 15, 445.

    Google Scholar 

  70. A. Bencini, A. V. Palii, M. Ostrovsky, B. S. Tsukerblat, and M. G. Vyttemoeven (1995). Mol. Phys. 86, 1085.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matusiewicz, M., Czerwiński, M. & Kasperczyk, J. Exchange and Delocalization Effects in [Fe6S6]2+ Superclusters. Journal of Cluster Science 12, 537–562 (2001). https://doi.org/10.1023/A:1014220314422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014220314422

Navigation