Skip to main content
Log in

Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Electron relays play a crucial role for efficient light-induced activation by a photo-redox moiety of catalysts for multi-electronic transformations. Their insertion between the two units reduces detrimental energy transfer quenching while establishing at the same time unidirectional electron flow. This rectifying function allows charge accumulation necessary for catalysis. Mapping these events in photophysical studies is an important step towards the development of efficient molecular photocatalysts. Three modular complexes comprised of a Ru-chromophore, an imidazole electron relay function, and a terpyridine unit as coordination site for a metal ion were synthesized and the light-induced electron transfer events studied by laser flash photolysis. In all cases, formation of an imidazole radical by internal electron transfer to the oxidized chromophore was observed. The effect of added base evidenced that the reaction sequence depends strongly on the possibility for deprotonation of the imidazole function in a proton-coupled electron transfer process. In the complex with MnII present as a proxy for a catalytic site, a strongly accelerated decay of the imidazole radical together with a decreased rate of back electron transfer from the external electron acceptor to the oxidized complex was observed. This transient formation of an imidazolyl radical is clear evidence for the function of the imidazole group as an electron relay. The implication of the imidazole proton and the external base for the kinetics and energetics of the electron trafficking is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2.
Scheme 3.

Similar content being viewed by others

Notes

  1. The significant absorption of the imidazole radical around 650 nm is responsible for the slow additional rise in the 605 nm kinetic traces (Fig. 1a) which is no longer purely attributable to the MV radical.

  2. Light-induced Mn oxidation in this kind of complexes has been demonstrated by EPR measurements in presence of irreversible electron acceptors.[17, 18] However, in these studies MnIII formation is not time-resolved and therefore the detection of Mn oxidation is not a proof for the occurrence of intramolecular ET.

  3. The same mechanism explains the absence of emission when the imidazole group is deprotonated in the GS.[14] The photoacid behavior is also the reason why this kind of complexes suffers from strong excited state quenching in aqueous solution.[19].

  4. The persistence of this wave at low concentrations of base could be related to oxidation by RuIII of the external imidazole coupled to deprotonation of the latter.

References

  1. Ibrahim, M., Fransson, T., Chatterjee, R., Cheah, M. H., Hussein, R., Lassalle, L., et al. (2020). Untangling the sequence of events during the S2 –> S3 transition in photosystem II and implications for the water oxidation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12624–12635. https://doi.org/10.1073/pnas.2000529117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubitz, W., Chrysina, M., & Cox, N. (2019). Water oxidation in photosystem II. Photosynthesis Research, 142(1), 105–125. https://doi.org/10.1007/s11120-019-00648-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Styring, S., Sjoholm, J., & Mamedov, F. (2012). Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II. Biochimica et Biophysica Acta, 1817(1), 76–87. https://doi.org/10.1016/j.bbabio.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  4. Brettel K, Schlodder E, Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accumulation in the O2-evolving complex. Biochimica et Biophysica Acta (BBA) Bioenergetics, 766(2):403–415 https://doi.org/10.1016/0005-2728(84)90256-1

  5. Hammarstrom, L., & Styring, S. (2011). Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy & Environmental Science, 4(7), 2379–2388. https://doi.org/10.1039/c1ee01348c

    Article  CAS  Google Scholar 

  6. Zhao, Y. X., Swierk, J. R., Megiatto, J. D., Sherman, B., Youngblood, W. J., Qin, D. D., et al. (2012). Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proceedings of the National Academy of Sciences of the United States of America, 109(39), 15612–15616

    Article  CAS  Google Scholar 

  7. Lachaud, T., Quaranta, A., Pellegrin, Y., Dorlet, P., Charlot, M. F., Un, S., et al. (2005). A biomimetic model of the electron transfer between P-680 and the TyrZ-His190 pair of PSII. Angewandte Chemie-International Edition, 44(10), 1536–1540. https://doi.org/10.1002/anie.200461948

    Article  CAS  PubMed  Google Scholar 

  8. Moore, G. F., Hambourger, M., Kodis, G., Michl, W., Gust, D., Moore, T. A., et al. (2010). Effects of protonation state on a tyrosine-histidine bioinspired redox mediator. The Journal of Physical Chemistry B, 114(45), 14450–14457. https://doi.org/10.1021/jp101592m

    Article  CAS  PubMed  Google Scholar 

  9. Megiatto, J. D., Jr., Mendez-Hernandez, D. D., Tejeda-Ferrari, M. E., Teillout, A. L., Llansola-Portoles, M. J., Kodis, G., et al. (2014). A bioinspired redox relay that mimics radical interactions of the Tyr-His pairs of photosystem II. Nature Chemistry, 6(5), 423–428. https://doi.org/10.1038/nchem.1862

    Article  CAS  PubMed  Google Scholar 

  10. Manbeck, G. F., Fujita, E., & Concepcion, J. J. (2016). Proton-coupled electron transfer in a strongly coupled photosystem II-inspired chromophore-imidazole-phenol complex: Stepwise oxidation and concerted reduction. Journal of the American Chemical Society, 138(36), 11536–11549. https://doi.org/10.1021/jacs.6b03506

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J., Kuss-Petermann, M., & Wenger, O. S. (2015). Dependence of reaction rates for bidirectional PCET on the electron donor-electron acceptor distance in phenol-Ru(2,2’-bipyridine)(3)(2)(+) dyads. The Journal of Physical Chemistry B, 119(6), 2263–2273. https://doi.org/10.1021/jp506087t

    Article  CAS  PubMed  Google Scholar 

  12. Chararalambidis, G., Das, S., Trapali, A., Quaranta, A., Orio, M., Halime, Z., et al. (2018). Water molecules gating a photoinduced one-electron two-protons transfer in a tyrosine/histidine (Tyr/His) model of photosystem II. Angewandte Chemie (International ed. in English), 57(29), 9013–9017. https://doi.org/10.1002/anie.201804498

    Article  CAS  Google Scholar 

  13. Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W., & Aukauloo, A. (2011). Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy & Environmental Science, 4(7), 2353–2365. https://doi.org/10.1039/c0ee00645a

    Article  CAS  Google Scholar 

  14. Quaranta, A., Lachaud, F., Herrero, C., Guillot, R., Charlot, M. F., Leibl, W., et al. (2007). Influence of the protonic state of an imidazole-containing ligand on the electrochemical and photophysical properties of a Ruthenium(II)Polypyridine-type complex. Chemistry-a European Journal, 13(29), 8201–8211. https://doi.org/10.1002/chem.200700185

    Article  CAS  Google Scholar 

  15. Limburg, J., Vrettos, J. S., Chen, H., de Paula, J. C., Crabtree, R. H., & Brudvig, G. W. (2001). Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H2O)Mn(III)(O)2Mn(IV)(OH2)(terpy)](NO3)3 (terpy = 2,2’:6,2"-terpyridine). Journal of the American Chemical Society, 123(3), 423–430. https://doi.org/10.1021/ja001090a

    Article  CAS  PubMed  Google Scholar 

  16. Chen, H., Tagore, R., Das, S., Incarvito, C., Faller, J. W., Crabtree, R. H., et al. (2005). General synthesis of di-mu-oxo dimanganese complexes as functional models for the oxygen evolving complex of photosystem II. Inorganic Chemistry, 44(21), 7661–7670. https://doi.org/10.1021/ic0509940

    Article  CAS  PubMed  Google Scholar 

  17. Herrero, C., Quaranta, A., Protti, S., Leibl, W., Rutherford, A. W., Fallahpour, R., et al. (2011). Light-Driven Activation of the [H(2)O(terpy)Mn(III)-mu-(O(2))-Mn(IV)(terpy)OH(2)] Unit in a Chromophore-Catalyst Complex. Chemistry-an Asian Journal, 6(6), 1335–1339. https://doi.org/10.1002/asia.201100030

    Article  CAS  Google Scholar 

  18. Tebo, A. G., Das, S., Farran, R., Herrero, C., Quaranta, A., Fallahpour, R., et al. (2017). Light-driven electron transfer in a modular assembly of a ruthenium(II) polypyridine sensitiser and a manganese(II) terpyridine unit separated by a redox active linkage. DFT analysis. Comptes Rendus Chimie, 20(3), 323–332. https://doi.org/10.1016/j.crci.2016.08.010

    Article  CAS  Google Scholar 

  19. Herrero, C., Quaranta, A., Fallahpour, R. A., Leibl, W., & Aukauloo, A. (2013). Identification of the Different Mechanisms of Activation of a [Ru-II(tpy)(bpy)(OH2)](2+) Catalyst by Modified Ruthenium Sensitizers in Supramolecular Complexes. Journal of Physical Chemistry C, 117(19), 9605–9612. https://doi.org/10.1021/Jp4025816

    Article  CAS  Google Scholar 

  20. Watanabe, T., & Honda, K. (1982). Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. The Journal of Physical Chemistry, 86(14), 2617–2619. https://doi.org/10.1021/j100211a014

    Article  CAS  Google Scholar 

  21. Qin, X. Z., Liu, A., Trifunac, A. D., & Krongauz, V. V. (1991). Photodissociation of hexaarylbiimidazole. 1. Triplet-state formation. The Journal of Physical Chemistry, 95(15), 5822–5826. https://doi.org/10.1021/j100168a022

    Article  CAS  Google Scholar 

  22. Sathe, S. S., Ahn, D., & Scott, T. F. (2015). Re-examining the photomediated dissociation and recombination kinetics of hexaarylbiimidazoles. Industrial & Engineering Chemistry Research, 54(16), 4203–4212. https://doi.org/10.1021/ie504230c

    Article  CAS  Google Scholar 

  23. Coraor, G. R., Riem, R. H., MacLachlan, A., & Urban, E. J. (1971). Flash photolysis of a substituted hexaarylbiimidazole and reactions of the imidazolyl radical. The Journal of Organic Chemistry, 36(16), 2272–2275. https://doi.org/10.1021/jo00815a016

    Article  CAS  Google Scholar 

  24. Eigen, M. (1964). Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: ELEMENTARY PROCESSES. Angewandte Chemie International Edition in English, 3(1), 1–19. https://doi.org/10.1002/anie.196400011

    Article  Google Scholar 

  25. Nurminen, E. J., Mattinen, J. K., & Lönnberg, H. (2001). Nucleophilic and acid catalysis in phosphoramidite alcoholysis. Journal of the Chemical Society, Perkin Transactions, 2(11), 2159–2165. https://doi.org/10.1039/B104910K

    Article  Google Scholar 

  26. Kaljurand, I., Kutt, A., Soovali, L., Rodima, T., Maemets, V., Leito, I., et al. (2005). Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: Unification of different basicity scales. Journal of Organic Chemistry, 70(3), 1019–1028. https://doi.org/10.1021/jo048252w

    Article  CAS  Google Scholar 

  27. Khade, R. V., Dutta Choudhury, S., Pal, H., & Kumbhar, A. S. (2018). Excited State Interaction of Ruthenium (II) Imidazole Phenanthroline Complex [Ru(bpy)2ipH]2+ with 1,4-Benzoquinone: Simple Electron Transfer or Proton-Coupled Electron Transfer? ChemPhysChem, 19(18), 2380–2388. https://doi.org/10.1002/cphc.201800313

    Article  CAS  PubMed  Google Scholar 

  28. Giordano, P. J., Bock, C. R., Wrighton, M. S., Interrante, L. V., & Williams, R. F. X. (1977). Excited state proton transfer of a metal complex: Determination of the acid dissociation constant for a metal-to-ligand charge transfer state of a ruthenium(II) complex. Journal of the American Chemical Society, 99(9), 3187–3189. https://doi.org/10.1021/ja00451a066

    Article  CAS  Google Scholar 

  29. Marciniak, B., Kozubek, H., & Paszyc, S. (1992). Estimation of pKa* in the first excited singlet state. A physical chemistry experiment that explores acid-base properties in the excited state. Journal of Chemical Education, 69(3), 247. https://doi.org/10.1021/ed069p247

    Article  CAS  Google Scholar 

  30. Weller, A. (1982). Photoinduced electron transfer in solution: Exciplex and radical ion pair formation free enthalpies and their solvent dependence. Zeitschrift für Physikalische Chemie, 133(1), 93–98. https://doi.org/10.1524/zpch.1982.133.1.093

    Article  CAS  Google Scholar 

  31. Rumble, C. A., Licari, G., & Vauthey, E. (2020). Molecular dynamics simulations of bimolecular electron transfer: Testing the coulomb term in the weller equation. The Journal of Physical Chemistry B, 124(44), 9945–9950. https://doi.org/10.1021/acs.jpcb.0c09031

    Article  CAS  PubMed  Google Scholar 

  32. Tyburski, R., Liu, T., Glover, S. D., & Hammarstrom, L. (2021). Proton-coupled electron transfer guidelines, fair and square. Journal of the American Chemical Society, 143(2), 560–576. https://doi.org/10.1021/jacs.0c09106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayer, J. M., & Rhile, I. J. (2004). Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs.concerted pathways. Biochimica et Biophysica Acta, 1655(1–3), 51–58. https://doi.org/10.1016/j.bbabio.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Tommos, C., & Babcock, G. T. (2000). Proton and hydrogen currents in photosynthetic water oxidation. Biochimica et Biophysica Acta, 1458(1), 199–219. https://doi.org/10.1016/s0005-2728(00)00069-4

    Article  CAS  PubMed  Google Scholar 

  35. Yoneda, Y., Mora, S. J., Shee, J., Wadsworth, B. L., Arsenault, E. A., Hait, D., et al. (2021). Electron-nuclear dynamics accompanying proton-coupled electron transfer. Journal of the American Chemical Society, 143(8), 3104–3112. https://doi.org/10.1021/jacs.0c10626

    Article  CAS  PubMed  Google Scholar 

  36. Huynh, M. T., Mora, S. J., Villalba, M., Tejeda-Ferrari, M. E., Liddell, P. A., Cherry, B. R., et al. (2017). Concerted one-electron two-proton transfer processes in models inspired by the Tyr-his couple of photosystem II. ACS Central Science, 3(5), 372–380. https://doi.org/10.1021/acscentsci.7b00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, M.-T., Irebo, T., Johansson, O., & Hammarström, L. (2011). Proton-coupled electron transfer from tyrosine: A strong rate dependence on intramolecular proton transfer distance. Journal of the American Chemical Society, 133(34), 13224–13227. https://doi.org/10.1021/ja203483j

    Article  CAS  PubMed  Google Scholar 

  38. Hammarström, L., & Styring, S. (2011). Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy & Environmental Science, 4(7), 2379–2388. https://doi.org/10.1039/C1EE01348C

    Article  Google Scholar 

  39. Irebo, T., Reece, S. Y., Sjödin, M., Nocera, D. G., & Hammarström, L. (2007). Proton-coupled electron transfer of tyrosine oxidation: Buffer dependence and parallel mechanisms. Journal of the American Chemical Society, 129(50), 15462–15464. https://doi.org/10.1021/ja073012u

    Article  CAS  PubMed  Google Scholar 

  40. Magnuson, A., Berglund, H., Korall, P., Hammarstrom, L., Akermark, B., Styring, S., et al. (1997). Mimicking electron transfer reactions in photosystem II: Synthesis and photochemical characterization of a ruthenium(II) tris(bipyridyl) complex with a covalently linked tyrosine. Journal of the American Chemical Society, 119(44), 10720–10725.

    Article  CAS  Google Scholar 

  41. Karlsson, S., Boixel, J., Pellegrin, Y., Blart, E., Becker, H.-C., Odobel, F., et al. (2012). Accumulative electron transfer: Multiple charge separation in artificial photosynthesis. Faraday Discussions, 155, 233–252. https://doi.org/10.1039/C1FD00089F

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and by the Region Ile-de-France in the framework of C’Nano IdF. The Conseil Général d’Essonne (ASTRE) is acknowledged. The LABEX CHARMMMAT is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Leibl.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer - a topical issue in honour of Klaus Brettel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3952 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotico, P., Herrero, C., Protti, S. et al. Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad. Photochem Photobiol Sci 21, 247–259 (2022). https://doi.org/10.1007/s43630-021-00163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00163-2

Keywords

Navigation