Skip to main content

Advertisement

Log in

Heightened nest loss in tropical forest fragments despite higher predator load in core forest

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Tropical understory birds have declined due largely to habitat loss and fragmentation. Here, we revisited a study conducted three decades ago and used artificial nests to examine depredation rates in a Costa Rican biological corridor. Using camera trap data, we compared potential nest predator detection rates at experimental tinamou ground nests in La Selva Biological Station and at sites in five local forest fragments. Nest predator detections were positively associated with landscape-scale core forest and distance away from forest edge, as well as with local-scale human trails, and negatively associated with primary forest compared to secondary growth. Twenty-two of 52 artificial nests were depredated, which was similar to previous research in the area. Mammalian and avian predators were common nest predators, but unknown predators (presumably snakes) were responsible for half of nests lost. Nests within La Selva core forest had lower probability of nest loss compared to fragments despite exhibiting higher predator detection rates. Yet other fragmentation covariates such as distance from forest edge, nest occurrence on human trails, or forest age were not associated with nest loss. We suggest that concentrated foraging is the underlying mechanism behind the community interactions that we observed. Community members exist in concentrated use areas within forest fragments, which results in heightened predator foraging rates and thus stronger interactions in fragments despite more predators encountering the nests in core forest. Fragmentation is a global phenomenon and we suspect that concentrated community use of limited resources is driving species to interact more strongly than in natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arango-Vélez N, Kattan GH (1997) Effects of forest fragmentation on experimental nest predation in Andean cloud forest. Biol Cons 81:137–143

    Article  Google Scholar 

  • Arnold S, Stunkel A, Wasko DK, Visco DM (2012) Factors influencing nest predation rates by bird-eating snakes (Pseustes poecilonotus) on simulated chestnut-backed antbird (Myrmeciza exsul) nests. Organization for Tropical Studies (Unpubl.) REU, pp 32–42

  • BirdLife International (2017) Tinamus major (amended version of 2016 assessment). The IUCN red list of threatened species 2017: e.T22678148A110915916. http://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T22678148A110915916.en. Downloaded on 27 July 2019

  • Boyle WA, Sigel BJ (2015) Ongoing changes in the avifauna of La Selva Biological Station, Costa Rica: twenty-three years of Christmas Bird Counts. Biol Cons 188:11–21

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burton M, Burton R (2002) International wildlife encyclopedia. Marshall Cavendish, Singapore

    Google Scholar 

  • Chalfoun AD, Thompson FR III, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318

    Article  Google Scholar 

  • Cove MV, Spínola RM, Jackson VL, Sáenz JC, Chassot O (2013) Integrating occupancy modeling and camera-trap data to estimate medium and large mammal detection and richness in a Central American biological corridor. Trop Conserv Sci 6:781–795

    Article  Google Scholar 

  • Cove MV, Spínola RM, Jackson VL, Saénz JC (2014) The role of fragmentation and landscape changes in the ecological release of common nest predators in the neotropics. PeerJ. https://doi.org/10.7717/peerj.464

    Article  PubMed  PubMed Central  Google Scholar 

  • Cove MV, Fernandez CM, Vera Alvarez MD, Bird S, Jones D, Fagan ME (2017a) Toucans descend to the forest floor to consume the eggs of ground-nesting birds. Food Webs 10:2–4

    Article  Google Scholar 

  • Cove MV, Kuhn KM, Foster P (2017b) Micrurus alleni (Allen’s coral snake) predation and scavenging. Herpetol Rev 48:453–454

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Gibbs JP (1991) Avian nest predation in tropical Wet forest: an experimental study. Oikos 60:155–161

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  CAS  PubMed  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmsen BJ, Foster RJ, Silver S, Ostro L, Doncaster CP (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133

    Article  Google Scholar 

  • Hutchinson J, Waser PM (2007) Use, misuse and extensions of “ideal gas” models of animal encounter. Biol Rev 82:335–359

    Article  PubMed  Google Scholar 

  • IUCN, Species Survival Commission (2016) IUCN red list of threatened species. Prepared by the IUCN Species Survival Commission. <iucnredlist.org>. Downloaded on 27 July 2019

  • Layman CA, Giery ST, Buhler S, Rossi R, Penland T, Henson MN, Bogdanoff AK, Cove MV, Irizarry AD, Schalk CM, Archer SK (2015) A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4:14–24

    Article  Google Scholar 

  • Mazerolle MJ (2011) AICcmodavg: model selection and multimodel inference based on (Q) AIC (c). R Package Version 1

  • Meyers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Newmark WD, Stanley TR (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci 108:11488–11493

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardo Vargas LE, Cove MV, Spinola RM, de la Cruz JC, Saenz JC (2016) Assessing species traits and landscape relationships of the mammalian carnivore community in a neotropical biological corridor. Biodivers Conserv 25:739–752

    Article  Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reider KE, Carson WP, Donnelly MA (2013) Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in a Neotropical wet forest, Costa Rica. Biol Cons 163:90–98

    Article  Google Scholar 

  • Romero A, O’Neill BJ, Timm RM, Gerow KG, McClearn D (2013) Group dynamics, behavior, and current and historical abundance of peccaries in Costa Rica’s Caribbean lowlands. J Mammal 94:771–791

    Article  Google Scholar 

  • Sekercioglu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF (2002) Disappearance of insectivorous birds from tropical forest fragments. Proc Natl Acad Sci 99:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small MF, Hunter ML (1988) Forest fragmentation and avian nest predation in forested landscapes. Oecologia 76:62–64

    Article  CAS  PubMed  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2012) Response of large galliforms and tinamous (Cracidae, Phasianidae, Tinamidae) to habitat loss and fragmentation in northern Guatemala. Oryx 46:567–576

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Vera Alvarez MD, Fernandez CM, Cove MV (2019) Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs. Neotrop Biol Conserv 14:143–156

    Article  Google Scholar 

  • Visco DM, Sherry TW (2015) Increased abundance, but reduced nest predation in the chestnut-backed antbird in Costa Rican rainforest fragments: surprising impacts of a pervasive snake species. Biol Cons 188:22–31

    Article  Google Scholar 

  • Visco DM, Michel NL, Boyle WA, Sigel BJ, Woltmann S, Sherry TW (2015) Patterns and causes of understory bird declines in human-disturbed tropical forest landscapes: a case study from Central America. Biol Cons 191:117–129

    Article  Google Scholar 

  • Young BE, Sherry TW, Sigel BJ, Woltmann S (2008) Nesting success of Costa Rican lowland rain forest birds in response to edge and isolation effects. Biotropica 40:615–622

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (NSF) and Louis Stokes Alliances for Minority Participation (LSAMP). Thanks to the Organization for Tropical Studies (OTS) and to Selva Verde Lodge, particularly Carlos de la Rosa, Orlando Vargas, Bernal Matarrita, Danilo Brenes, Ivan Castillo, and Gerardo Alvarez for their continued support. Thanks to Carissa Ganong and Adriana Baltodano for managing the REU program. Finally, thanks to S. Bird, D. Jones, and other REUs for assisting with fieldwork, and G. Keating and M. Fagan for GIS assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Cove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, C.M., Vera Alvarez, M.D. & Cove, M.V. Heightened nest loss in tropical forest fragments despite higher predator load in core forest. Trop Ecol 60, 281–287 (2019). https://doi.org/10.1007/s42965-019-00032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-019-00032-1

Keywords

Navigation