Skip to main content

Advertisement

Log in

Contribution of root-associated microbial communities on soil quality of Oak and Pine forests in the Himalayan ecosystem

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Microorganisms, the fundamental components of all the ecosystems, play significant role in various biological processes such as biodegradation, mineralization and nutrient mobilization. The role of rhizosphere associated microbial interactions with reference to their contribution in enzymatic activities in two dominant forest tree species of Indian Himalaya, namely Oak (Quercus leucotrichophora) and Pine (Pinus roxburghii), is focused in the present study. Rhizosphere soil and root samples were collected in active and dormant seasons for two consecutive years from three selected sites. Root samples were studied for colonization by fungal associates as indicator of their ecological functions. Soil samples were analyzed for physico-chemical characteristics and enzymatic activities as a measure of soil health. Dark Septate Endophytes (DSE) and fungal colonization were observed in roots of both the tree species. Microscopic observations revealed high percentage of DSE and fungal hyphae (76–96 and 32–78%) in Oak while in Pine roots this percentage was 8–10 and 48–86%, respectively. Most of the soil physico-chemical parameters were found higher in Oak soil except total phosphorus content. Further, activity of acid phosphatase and dehydrogenase was recorded higher in Oak soil as compared to Pine soil. Pine soil samples showed high alkaline phosphatase and β-glucosidase activities. The study concludes that microbial associations and their activities in Oak and Pine soils appeared to define the specific properties of both forest types in terms of slow biodegradation in Pine and higher carbon sequestration in Oak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed A (2012) Analysis of forest vegetation in Ranikhet, Kumaon Himalayas, Uttarakhand, India. Indian J Funda Appl Life Sci 2(4):16–23

    CAS  Google Scholar 

  • Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    Article  PubMed  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  CAS  PubMed  Google Scholar 

  • Brzostek ER, Greco A, Drake JE, Finzi AC (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115:65–76

    Article  CAS  Google Scholar 

  • Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chaurasia B, Pandey P, Palni LMS (2004) Occurrence of arbuscular mycorrhizae in the rhizosphere of Himalayan Yew (Taxus baccata L. subsp. wallichiana (Zucc.) Pilger)—a case study. In: Podila GK, Varma AK (eds) Basic research and applications of Mycorrhizae. IK, New Delhi, pp 26–35

    Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS (2005) Distribution, colonization and diversity of arbuscular mycorrhizal fungi in rhododendrons of central Himalayan region of India. Forest Ecol Manag 207(3):315–324

    Article  Google Scholar 

  • Chavez-Barcenas AT, Lua-Aldama J, Salmeron-Santiago IA, Silva-Adame MB, Garcia-Saucedo PA, Olalde-Portugal V (2013) A modified staining technique for the anatomical observation of mycorrhizal roots of woody trees. Afr J Microbiol Res 7(28):3589–3596

    Google Scholar 

  • Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Natl Acad Sci USA 113(31):8741–8746

    Article  CAS  PubMed  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) USA: methods for assessing soil quality. Soil Science Society A special publication N° 49, Madison, pp 247–272

    Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144:199–205

    Article  CAS  Google Scholar 

  • Duo A, Bruggmann R, Zoller S, Bernt M, Grunig C (2012) Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s. l. Acephala applanata species complex. BMC Genom 13:166

    Article  CAS  Google Scholar 

  • Garcia I, Mendoza R, Pomar MC (2012) Arbuscular mycorrhizal symbiosis and dark septate endophytes under contrasting grazing modes in the Magellanic steppe of Tierra del Fuego. Agric Ecosyst Environ 155:194–201

    Article  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fung Divers. https://doi.org/10.1007/s13225-012-0156

    Article  Google Scholar 

  • Huang W, Liu J, Zhou G, Zhang D, Deng Q (2011) Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China. Biogeosciences 8:1901–1910

    Article  CAS  Google Scholar 

  • Jain R, Pandey A (2016) Soil enzymes and microbial endophytes as indicators of climate variation along an altitudinal gradient with respect to wheat rhizosphere under mountain ecosystem. Rhizosphere 2:75–84

    Article  Google Scholar 

  • Joshi G, Negi GCS (2015) Physico-chemical properties along soil profiles of two dominant forest types in Western Himalaya. Curr Sci 109(4):798–803

    CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Jones KL, Mattox JD, Yaege C (2010) Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 19(1):41–53

    Article  PubMed  Google Scholar 

  • Kaushik D, Kaushik P, Kumar A, Rana AC, Sharma C, Aneja KR (2013) GC-MS analysis and antimicrobial activity of essential oil of Pinus roxburghii Sarg. From Northern India. J Essent Oil Bear Pl 16:563–567

    Article  CAS  Google Scholar 

  • Kim S, Li G, Han SH, Kim HJ, Kim C, Lee ST, Son Y (2018) Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years. Ann Forest Sci. https://doi.org/10.1007/s13595-018-0690-1

    Article  Google Scholar 

  • Knapp DG, Kovács GM (2016) Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiol Ecol 92(12):190

    Article  CAS  Google Scholar 

  • Kumar A, Singh S, Pandey A (2009) General microflora, arbuscular mycorrhizal colonization and occurrence of endophytes in rhizosphere of two age groups of Ginkgo biloba L. of Indian central Himalaya. Indian J Microbiol 49:134–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yony-liang C, Ting-zhen Y (2000) Ecological distribution and seasonal change of soil microorganisms in pure and mixed plantations. J For Res 11(2):106–108

    Article  Google Scholar 

  • Li X, He X, Hou L, Ren Y, Wang S, Su F (2018) Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 8(1):7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European Forest Plants. PLoS One. https://doi.org/10.1371/journal.pone.0124752

    Article  PubMed  PubMed Central  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7(3):181–191

    CAS  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    Article  CAS  Google Scholar 

  • Nadiaye EL, Sandeno JM, McGrath D, Dick RP (2000) Integrative biological indicators for detecting change in soil quality. Am J Alt Agric 15:26–36

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of Soil Analysis: chemical and microbiological properties. American Society of Agronomy, Madison, pp 403–430

    Google Scholar 

  • Pan Y, McCullough K, Hollinger DY (2018) Forest biodiversity, relationships to structural and functional attributes, and stability in New England forests. For Ecosyst. https://doi.org/10.1186/s40663-017-0089-8

    Article  Google Scholar 

  • Pandey A (2019) Are dark septate endophytes bioindicators of climate in mountain ecosystems? Rhizosphere. https://doi.org/10.1016/j.rhisph.2019.01.001

    Article  Google Scholar 

  • Pandey A, Palni LMS (2007) The rhizosphere effect in trees of the Indian Central Himalaya with special reference to altitude. Appl Ecol Env Res 5(1):93–102

    Article  Google Scholar 

  • Pandey A, Dhakar K, Jain R, Pandey N, Gupta VK, Kooliyottil R, Dhyani A, Malviya MK, Adhikari P (2018) Cold adapted fungi from Indian Himalaya: untapped source for bioprospecting. Proc Natl Acad Sci India Sect B Biol Sci 22:22. https://doi.org/10.1007/s40011-018-1002-0

    Article  CAS  Google Scholar 

  • Parkinson JA, Allen SE (1975) A wet digestion procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plan 6:1–11

    Article  CAS  Google Scholar 

  • Paudel S, Sah JP (2003) Physico-chemical characters of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal. Himalayan J Sci 1(2):107–110

    Article  Google Scholar 

  • Quilchano C, Maranon T (2002) Dehydrogenase activity in Mediterranean forest soils. Biol Fert Soils 35:102–107

    Article  CAS  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathod D, Dar M, Gade A, Shrivastava RB, Rai M, Varma A (2013) Microbial endophytes: progress and challenges. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, Berlin, pp 101–121

    Chapter  Google Scholar 

  • Rodriguez R, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS (2014) Oak root response to Ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 9(5):e98376. https://doi.org/10.1371/journal.pone.0098376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma JC, Sharma Y (2004) Effect of forest ecosystem on the soil property—a review. Agric Rev 25(1):6–28

    Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Singh G, Padalia H, Rai ID, Bharti RR, Rawat GS (2016) Spatial extent and conservation status of Banj oak (Quercus leucotrichophora A. Camus) forests in Uttarakhand, Western Himalaya. Trop Ecol 57(2):255–262

    Google Scholar 

  • Smith SE, Read DJ (2008) The symbionts forming arbuscular mycorrhizas. Mycorrhizal Symbiosis 2:13–41

    Article  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. J Soil Sci Plant Nutr 40(4):593–600

    Article  CAS  Google Scholar 

  • Tiwari SP, Kumar P, Yadav D, Chauhan DK (2013) Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas. Turk J Bot 37(1):65–73

    Google Scholar 

  • Van der Heijden MGA, Martin M, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8(2):214–217

    Article  PubMed  Google Scholar 

  • Waldrop MP, Zak DR, Sinnsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol App 14(4):1172–1177

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic soil titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Wu B, Maruyama H, Teramoto M, Hougetsu T (2012) Structural and functional interactions between extraradical mycelia of ectomycorrhizal Pisolithus isolates. New Phytol 194:1070–1078

    Article  PubMed  Google Scholar 

  • Wu Q-S, Li Y, Zou Y-N, He X-H (2015) Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25:121–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Director and Scientific Advisory Committee of G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, for supporting this study.

Funding

This study was funded by Ministry of Environment, Forest and Climate Change. Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhyani, A., Jain, R. & Pandey, A. Contribution of root-associated microbial communities on soil quality of Oak and Pine forests in the Himalayan ecosystem. Trop Ecol 60, 271–280 (2019). https://doi.org/10.1007/s42965-019-00031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-019-00031-2

Keywords

Navigation