Skip to main content
Log in

Nonlinear Model Predictive Control for Near-Space Interceptor Based on Finite Time Disturbance Observer

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a novel nonlinear model predictive control design method based on the finite time disturbance observer (FTDO) and dynamic control allocation (DCA) algorithm for the near-space interceptor (NSI). First, the FTDO is introduced to estimate the mismatched system disturbance. The nonlinear model predictive control scheme based on the estimation value is proposed to obtain the virtual control command, and the mismatched disturbance can be effectively removed from the output channels of the NSI by designing a feed-forward disturbance compensation term with an appropriate compensation gain matrix. Moreover, a new DCA method is given to distribute the above virtual control command among the corresponding actuators (reaction jets and aerodynamic fins). Finally, numerical simulations illustrate that the proposed control scheme can track the command signal with high precision and have strong robustness against the mismatched disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wang W (2012) Near-space vehicle-borne SAR with reflector antenna for high-resolution and wide-swath remote sensing. IEEE Trans Geosci Remote Sens 50(2):338–348

    Article  Google Scholar 

  2. Liang Z, Ren Z (2018) Tentacle-based guidance for entry flight with no-fly zone constraint. J Guid Control Dyn 10(2514/1):g003157

    Google Scholar 

  3. Liang Z, Liu S, Li Q et al (2017) Lateral entry guidance with no-fly zone constraint. Aerosp Sci Technol 60(1):39–47

    Article  Google Scholar 

  4. Zhou D, Shao C (2009) Dynamics and autopilot design for endoatmospheric interceptors with dual control systems. Aerosp Sci Technol 13(6):291–300

    Article  Google Scholar 

  5. Li Q, Zhou D (2014) Nonlinear autopilot design for interceptors with tail fins and pulse thrusters via Theta-D approach. J Syst Eng Electron 25(2):273–280

    Article  Google Scholar 

  6. Xu B, Zhou D (2014) Backstepping and control allocation for dual aero/propulsive missile control. Syst Eng Electron 36(3):527–532 (in chinese)

    Google Scholar 

  7. Wang Q, Jiang Y, Dong C et al (2014) H optimal output tracking control for dual-controller missile with tails and reaction jets based on dynamic inverse theory. Acta Armamentarii 35(4):552–558

    Google Scholar 

  8. Thukral A, Innocenti M (1998) A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering. IEEE Trans Control Syst Technol 6(3):359–371

    Article  Google Scholar 

  9. Li Z, Wei M, Zhou D et al (2012) Technology of lateral thrust and aerodynamics blended control for anti-air missile. China Astronautic Publishing House, Beijing

    Google Scholar 

  10. Xia Y, Fu M (2013) Compound control methodology for flight vehicles. Springer Science Business Media, Berlin

    Book  Google Scholar 

  11. Chen W, Balance D, Gawthrop P (2003) Optimal control of nonlinear systems: a predictive control approach. Automatica 39(4):633–641

    Article  MathSciNet  Google Scholar 

  12. Maeder U, Morari M (2010) Offset-free reference tracking with model predictive control. Automatica 46(9):1469–1476

    Article  MathSciNet  Google Scholar 

  13. Yang J, Zhang W (2014) Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator. IEEE Trans Circuits Syst II Express Briefs 61(1):49–53

    Article  Google Scholar 

  14. Li S, Yang J, Chen W et al (2014) Disturbance observer based control: methods and applications. CRC Press, Boca Raton

    Google Scholar 

  15. Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169

    Article  Google Scholar 

  16. Zhang R, Sun C, Zhang J et al (2013) Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J Control Theory Technol 11(2):299–305

    Article  Google Scholar 

  17. Guo C, Liang X, Wang J et al (2015) Nonsingular terminal slide mode control for near space interceptor. J Astronaut 36(1):58–67 (in chinese)

    MathSciNet  Google Scholar 

  18. Liu H, Guo L, Zhang Y (2012) An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn 67(3):2081–2088

    Article  MathSciNet  Google Scholar 

  19. Chen W (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710

    Article  MathSciNet  Google Scholar 

  20. Xia Y, Fu M, Deng Z et al (2013) Recent developments in sliding mode control and active disturbance rejection control. Control Theory Appl 30(2):137–147 (in chinese)

    MATH  Google Scholar 

  21. Johansen T, Fossen T (2013) Control allocation—a survey. Automatica 49(5):1087–1103

    Article  MathSciNet  Google Scholar 

  22. Tjønnas J, Johansen T (2008) Adaptive control allocation. Automatica 44(11):2754–2765

    Article  MathSciNet  Google Scholar 

  23. Durham W (1994) Constrained control allocation: three moment problem. AIAA J Guid Control Dyn 17(2):330–336

    Article  Google Scholar 

  24. Buffington J, Enns D (1996) Lyapunov stability analysis of daisy chain control allocation. AIAA J Guid Control Dyn 19(6):1226–1230

    Article  Google Scholar 

  25. Härkegård O (2004) Dynamic control allocation using constrained quadratic programming. AIAA J Guid Control Dyn 27(6):1028–1034

    Article  Google Scholar 

  26. Guo C, Liang X (2015) Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation. Proc Inst Mech Eng Part G J Aerosp Eng 229(9):1559–1574

    Article  Google Scholar 

  27. Yang J, Li S, Sun C et al (2013) Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicle. IEEE Trans Aerosp Electron Syst 49(2):1263–1275

    Article  Google Scholar 

  28. Yang J, Zhao Z, Li S et al (2014) Composite predictive flight control for airbreathing hypersonic vehicles. Int J Control 87(9):1970–1984

    Article  MathSciNet  Google Scholar 

  29. Shtessel Y, Shkolnikov I, Levant A (2007) Smooth second-order sliding modes: missile guidance application. Automatica 43(8):1470–1476

    Article  MathSciNet  Google Scholar 

  30. Shtessel Y, Shkolnikov I, Levant A (2009) Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans Aerosp Electron Syst 45(1):110–124

    Article  Google Scholar 

  31. Khalil H (1996) Nonlinear systems. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work was supported by Aeronautical Science Foundation of China under Grants 2016ZC12005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Guo.

Appendix 1

Appendix 1

1.1 Lie Derivative Expressions of Subsystem (17) ~ (19)

The Lie derivative expressions of the roll angle subsystem (17) are given by:

$$ \begin{aligned} L_{\varvec{f}} h_{1} &= \frac{{\partial h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}(\varvec{x}) = f_{\gamma } ,\\ L_{{\varvec{g}_{1} }} h_{1} &= \frac{{\partial h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) = [0,\;0,\;0] \hfill \\ L_{{\varvec{g}_{2} }} h_{1} &= \frac{{\partial h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) = [1,\;0,\;0,\;0,\;0,\;0], \hfill \\ L_{\varvec{f}}^{2} h_{1} &= L_{\varvec{f}} (L_{\varvec{f}} h_{1} ) = \frac{{\partial L_{\varvec{f}} h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}(\varvec{x}) \hfill \\ &= \frac{{\partial f_{\gamma } }}{\partial \gamma }f_{\gamma } + \frac{{\partial f_{\gamma } }}{\partial \beta }f_{\beta } + \frac{{\partial f_{\gamma } }}{\partial \alpha }f_{\alpha } + \frac{{\partial f_{\gamma } }}{{\partial \omega_{x} }}f_{{\omega_{x} }} \\ &\quad + \frac{{\partial f_{\gamma } }}{{\partial \omega_{y} }}f_{{\omega_{y} }} + \frac{{\partial f_{\gamma } }}{{\partial \omega_{z} }}f_{{\omega_{z} }} \hfill \\ L_{{\varvec{g}_{1} }} L_{\varvec{f}} h_{1} &= \frac{{\partial L_{\varvec{f}} h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) \\ &\quad= \left[ {\frac{1}{{J_{x} }}\frac{{\partial f_{\gamma } }}{{\partial \omega_{x} }},\;\frac{1}{{J_{y} }}\frac{{\partial f_{\gamma } }}{{\partial \omega_{y} }},\;\frac{1}{{J_{z} }}\frac{{\partial f_{\gamma } }}{{\partial \omega_{z} }}} \right] \hfill \\ L_{{\varvec{g}_{2} }} L_{\varvec{f}} h_{1} &= \frac{{\partial L_{\varvec{f}} h_{1} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) \\ &\quad= \left[ {\frac{{\partial f_{\gamma } }}{\partial \gamma },\;\frac{{\partial f_{\gamma } }}{\partial \beta },\;\frac{{\partial f_{\gamma } }}{\partial \alpha },\;\frac{{\partial f_{\gamma } }}{{\partial \omega_{x} }},\;\frac{{\partial f_{\gamma } }}{{\partial \omega_{y} }},\;\frac{{\partial f_{\gamma } }}{{\partial \omega_{z} }}} \right] \hfill \\ \frac{{\partial f_{\gamma } }}{\partial \gamma } &= \omega_{y} \sin \gamma \tan \vartheta + \omega_{z} \cos \gamma \tan \vartheta \hfill \\ \frac{{\partial f_{\gamma } }}{\partial \beta } &= 0,\frac{{\partial f_{\gamma } }}{\partial \alpha } = - \frac{{\omega_{y} \cos \gamma }}{{\cos^{2} \alpha }} + \frac{{\omega_{z} \sin \gamma }}{{\cos^{2} \alpha }} \hfill \\ \frac{{\partial f_{\gamma } }}{{\partial \omega_{x} }} &= 1,\frac{{\partial f_{\gamma } }}{{\partial \omega_{y} }} = - \cos \gamma \tan \vartheta ,\frac{{\partial f_{\gamma } }}{{\partial \omega_{z} }} = \sin \gamma \tan \vartheta \hfill \\ \end{aligned} $$

The Lie derivative expressions of the vertical overload subsystem (18) are given by:

$$ \begin{aligned} L_{\varvec{f}} h_{2} &= \frac{{\partial h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}(\varvec{x}) = \frac{{q{\text{SC}}_{z}^{\beta } }}{\text{mg}}f_{\beta } ,\\ L_{{\varvec{g}_{1} }} h_{2} &= \frac{{\partial h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) = [0,\;0,\;0] \hfill \\ L_{{\varvec{g}_{2} }} h_{2} &= \frac{{\partial h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) = \left[ {0,\;\frac{{qSC_{z}^{\beta } }}{mg},\;0,\;0,\;0,\;0} \right] \hfill \\ L_{\varvec{f}}^{2} h_{2} &= L_{\varvec{f}} (L_{\varvec{f}} h_{2} ) = \frac{{\partial L_{\varvec{f}} h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}(\varvec{x}) \hfill \\ &= \frac{{qSC_{z}^{\beta } }}{mg}\left( {\frac{{\partial f_{\beta } }}{\partial \gamma }f_{\gamma } + \frac{{\partial f_{\beta } }}{\partial \beta }f_{\beta } + \frac{{\partial f_{\beta } }}{\partial \alpha }f_{\alpha } + \frac{{\partial f_{\beta } }}{{\partial \omega_{x} }}f_{{\omega_{x} }} }\right.\\ &\quad\left.{+ \frac{{\partial f_{\beta } }}{{\partial \omega_{y} }}f_{{\omega_{y} }} + \frac{{\partial f_{\beta } }}{{\partial \omega_{z} }}f_{{\omega_{z} }} } \right) \hfill \\ L_{{\varvec{g}_{1} }} L_{\varvec{f}} h_{2} &= \frac{{\partial L_{\varvec{f}} h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) \\ & = \frac{{qSC_{z}^{\beta } }}{mg}\left[ {\frac{1}{{J_{x} }}\frac{{\partial f_{\beta } }}{{\partial \omega_{x} }},\;\frac{1}{{J_{y} }}\frac{{\partial f_{\beta } }}{{\partial \omega_{y} }},\;\frac{1}{{J_{z} }}\frac{{\partial f_{\beta } }}{{\partial \omega_{z} }}} \right] \hfill \\ L_{{\varvec{g}_{2} }} L_{\varvec{f}} h_{2} &= \frac{{\partial L_{\varvec{f}} h_{2} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) \\ & = \frac{{qSC_{z}^{\beta } }}{mg}\left[ {\frac{{\partial f_{\beta } }}{\partial \gamma },\;\frac{{\partial f_{\beta } }}{\partial \beta },\;\frac{{\partial f_{\beta } }}{\partial \alpha },\;\frac{{\partial f_{\beta } }}{{\partial \omega_{x} }},\;\frac{{\partial f_{\beta } }}{{\partial \omega_{y} }},\;\frac{{\partial f_{\beta } }}{{\partial \omega_{z} }}} \right] \hfill \\ \end{aligned} $$
$$\begin{aligned} \frac{{\partial f_{\beta } }}{\partial \gamma } &= 0,\frac{{\partial f_{\beta } }}{\partial \beta } = \frac{{qSC_{y}^{\alpha } \alpha \sin \alpha \cos \beta }}{{mV_{m} }} \\ & \quad+ \frac{{qSC_{z}^{\beta } (\cos \beta - \beta \sin \beta )}}{{mV_{m} }} \end{aligned}$$

\( \frac{{\partial f_{\beta } }}{\partial \alpha } = \omega_{x} \cos \alpha - \omega_{y} \sin \alpha + \frac{{qSC_{y}^{\alpha } (\sin \alpha + \alpha \cos \alpha )\sin \beta }}{{mV_{m} }} \),\( \frac{{\partial f_{\beta } }}{{\partial \omega_{x} }} = \sin \alpha ,\frac{{\partial f_{\beta } }}{{\partial \omega_{y} }} = \cos \alpha ,\frac{{\partial f_{\beta } }}{{\partial \omega_{z} }} = 0 \), \( \frac{{\partial f_{\beta } }}{{\partial \omega_{y} }} = \cos \alpha \), \( \frac{{\partial f_{\beta } }}{{\partial \omega_{z} }} = 0 \).

The Lie derivative expressions of the lateral overload subsystem (19) are given by:

$$ \begin{aligned}L_{\varvec{f}} h_{3} &= \frac{{\partial h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}(\varvec{x}) = \frac{{qSC_{y}^{\alpha } }}{mg}f_{\alpha } ,\\ L_{{\varvec{g}_{1} }} h_{3} &= \frac{{\partial h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) = [0,\;0,\;0] \end{aligned}$$

\( L_{{\varvec{g}_{2} }} h_{3} = \frac{{\partial h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) = \left[ {0,\;0,\;\frac{{qSC_{y}^{\alpha } }}{mg},\;0,\;0,\;0} \right], \)

$$ \begin{aligned} L_{\varvec{f}}^{2} h_{3} &= L_{\varvec{f}} (L_{\varvec{f}} h_{3} ) = \frac{{\partial L_{\varvec{f}} h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{f}({\varvec{x}}) \hfill \\ &= \frac{{qSC_{y}^{\alpha } }}{mg}\left( {\frac{{\partial f_{\alpha } }}{\partial \gamma }f_{\gamma } + \frac{{\partial f_{\alpha } }}{\partial \beta } f_{\beta } + \frac{{\partial f_{\alpha } }}{\partial \alpha }f_{\alpha } }\right.\\ &\quad\left.{+ \frac{{\partial f_{\alpha } }}{{\partial \omega_{x} }} f_{{\omega_{x} }} + \frac{{\partial f_{\alpha } }}{{\partial \omega_{y} }} f_{{\omega_{y} }} + \frac{{\partial f_{\alpha } }}{{\partial \omega_{z} }}f_{{\omega_{z} }} } \right) \end{aligned} $$
$$\begin{aligned} L_{{\varvec{g}_{1} }} L_{\varvec{f}} h_{3} &= \frac{{\partial L_{\varvec{f}} h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{1} (\varvec{x}) = \frac{{qSC_{y}^{\alpha } }}{mg}\\ &\quad\left[ {\frac{1}{{J_{x} }}\frac{{\partial f_{\alpha } }}{{\partial \omega_{x} }},\;\frac{1}{{J_{y} }}\frac{{\partial f_{\alpha } }}{{\partial \omega_{y} }},\;\frac{1}{{J_{z} }}\frac{{\partial f_{\alpha } }}{{\partial \omega_{z} }}} \right] \end{aligned}$$
$$\begin{aligned} L_{{\varvec{g}_{2} }} L_{\varvec{f}} h_{3} &= \frac{{\partial L_{\varvec{f}} h_{3} (\varvec{x})}}{{\partial \varvec{x}}}\varvec{g}_{2} (\varvec{x}) = \frac{{qSC_{y}^{\alpha } }}{mg}\\ &\quad\left[ {\frac{{\partial f_{\alpha } }}{\partial \gamma },\;\frac{{\partial f_{\alpha } }}{\partial \beta },\;\frac{{\partial f_{\alpha } }}{\partial \alpha },\;\frac{{\partial f_{\alpha } }}{{\partial \omega_{x} }},\;\frac{{\partial f_{\alpha } }}{{\partial \omega_{y} }},\;\frac{{\partial f_{\alpha } }}{{\partial \omega_{z} }}} \right] \end{aligned}$$
$$\begin{aligned} \frac{{\partial f_{\alpha } }}{\partial \gamma } &= 0,\frac{{\partial f_{\alpha } }}{\partial \beta } = \frac{{\omega_{y} \sin \alpha }}{{\cos^{2} \beta }}\\ &\quad - \frac{{\omega_{x} \cos \alpha }}{{\cos^{2} \beta }} - \frac{{qSC_{y}^{\alpha } \alpha \cos \alpha \sin \beta }}{{mV_{m} \cos^{2} \beta }} \end{aligned}$$
$$ \begin{aligned}\frac{{\partial f_{\alpha } }}{\partial \alpha } &= \omega_{y} \tan \beta \cos \alpha + \omega_{x} \tan \beta \sin \alpha \\ & \quad- \frac{{qSC_{y}^{\alpha } (\cos \alpha - \alpha \sin \alpha )}}{{mV_{m} \cos \beta }} \end{aligned}$$
$$\begin{aligned} \frac{{\partial f_{\alpha } }}{{\partial \omega_{x} }} &= - \tan \beta \cos \alpha ,\frac{{\partial f_{\alpha } }}{{\partial \omega_{y} }} = \tan \beta \sin \alpha ,\\ &\quad \frac{{\partial f_{\alpha } }}{{\partial \omega_{z} }} = 1 \end{aligned}$$

Based on the above computation, we can obtain that the input relative degrees (IRD) of the NSI system are \( (\sigma_{1} ,\;\sigma_{2} ,\;\sigma_{3} ) = (2,\;2,\;2) \), and the corresponding disturbance relative degrees (DRD) are \( (\bar{\tau }_{1} ,\;\bar{\tau }_{2} ,\;\bar{\tau }_{3} ) = (1,\;1,\;1) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Song, C., Zhao, YJ. et al. Nonlinear Model Predictive Control for Near-Space Interceptor Based on Finite Time Disturbance Observer. Int. J. Aeronaut. Space Sci. 19, 945–961 (2018). https://doi.org/10.1007/s42405-018-0077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-018-0077-4

Keywords

Navigation