Skip to main content
Log in

Fusion object detection of satellite imagery with arbitrary-oriented region convolutional neural network

  • Original Paper
  • Published:
Aerospace Systems Aims and scope Submit manuscript

Abstract

Object detection on multi-source images from satellite platforms is difficult due to the characteristics of imaging sensors. Multi-model image fusion provides a possibility to improve the performance of object detection. This paper proposes a fusion object detection framework with arbitrary-oriented region convolutional neural network. First, nine kinds of pansharpening methods are utilized to fuse multi-source images. Second, a novel object detection framework based on Faster Region-based Convolutional Neural Network structure is used, which is suitable for large-scale satellite images. Region Proposal Network is adopted to generate axially aligned bounding boxes enclosing object sin different orientations, and then extract features by pooling layers with different sizes. These features are used to classify the proposals, adjust the bounding boxes, and predict the inclined boxes and the objectness/non-objectness score. Smaller anchors for small objects are considered. Finally, inclined non-maximum suppression method is utilized to get the detection results. Experimental results showed that the proposed method performs better than some state-of-the-art object detection techniques, such as YOLO-v2, YOLO-v3, etc. Some numerical tests validate the efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.enviidl.com/.

  2. https://gisgeography.com/erdas-imagine/.

References

  1. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: NIPS. Curran Associates Inc

  2. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  3. Everingham M, Winn J (2006) The PASCAL visual object classes challenge 2007 (VOC2007) development kit. Int J Comput Vis 111(1):98–136

    Article  Google Scholar 

  4. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  5. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  6. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems. MIT Press, Lake Tahoe, NV, pp 1097–1105

  7. Vishwakarma S, Agrawal A (2013) A survey on activity recognition and behavior understanding in video surveillance. Visual Comput 29(10):983–1009

    Article  Google Scholar 

  8. Zhao ZQ, Zheng P, Xu ST et al (2018) Object detection with deep learning: a review. arXiv:1807.05511

  9. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  10. Ren S, He K, Girshick R et al (2015) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  11. Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9905. Springer, Cham

  12. Redmon J, Divvala S, Girshick R et al (2015) You only look once: unified, real-time object detection. arXiv:1506.02640

  13. Redmon, J, Farhadi A (2017) [IEEE 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)—Honolulu, HI (2017.7.21-2017.7.26)] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)—YOLO9000: better, faster, stronger, pp 6517–6525

  14. Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. arXiv:1804.02767

  15. Van Etten A (2018) You only look twice: rapid multi-scale object detection in satellite imagery. arXiv:1805.09512

  16. Jiang Y, Zhu X, Wang X et al (2017) R2CNN: rotational region CNN for orientation robust scene text detection. arXiv:1706.09579

  17. Girshick R, Donahue J, Darrell T et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE conference on computer vision & pattern recognition

  18. Girshick R (2015) Fast R-CNN. Computer Science

  19. Ma J, Shao W, Ye H, Wang L, Wang H, Zheng Y, Xue X (2017) Arbitrary-oriented scene text detection via rotation proposals. arXiv preprint arXiv:1703.01086

  20. Vivone G, Alparone L, Chanussot J et al (2014) A critical comparison among pansharpening algorithms. IEEE Trans Geosci Remote Sens 53(5):2565–2586

    Article  Google Scholar 

  21. Chaudhuri S, Kotwal K (2013) Hyperspectral image fusion. Springer, Berlin

    Book  Google Scholar 

  22. Middleton EM, Ungar SG, Mandl DJ, Ong L, Frye SW, Campbell PE, Landis DR, Young JP, Pollack NH (2013) The earth observing one (eo-1) satellite mission: over a decade in space. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):243–256

    Article  Google Scholar 

  23. Jing Z, Pan H, Xiao G (2015) Application to environmental surveillance: dynamic image estimation fusion and optimal remote sensing with fuzzy integral. Springer, Cham, pp 159–189. https://doi.org/10.1007/978-3-319-12892-4_7

    Book  Google Scholar 

  24. Zhongliang J, Han P, Yuankai L, Peng D (2018) Non-cooperative target tracking, fusion and control: algorithms and advances. Springer, Berlin

    Google Scholar 

  25. Pan H, Jing Z, Qiao L, Li M (2018) Visible and infrared image fusion using l0-generalized total variation model. Sci China Inf Sci 61(4):049103

    Article  MathSciNet  Google Scholar 

  26. Shen HF, Meng XC, Zhang LP (2016) An integrated framework for the spatio-temporal-spectral fusion of remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7135–7148

    Article  Google Scholar 

  27. Zhang LP, Shen HF (2016) Progress and future of remote sensing data fusion. J Remote Sens 20(5):1050–1061

    Google Scholar 

  28. Aiazzi B, Alparone L, Baronti S et al (2012) Twenty-five years of pansharpening: a critical review and new developments. In: Chen CH (ed) Signal and image processing for remote sensing, 2nd edn. CRC Press, Boca Raton, FL, pp 533–548

    Google Scholar 

  29. Chavez PS Jr, Sides SC, Anderson JA (1991) Comparison of three different methods to merge multiresolution and multispectral data: landsat TM and SPOT panchromatic. Photogramm Eng Remote Sens 57(3):295–303

    Google Scholar 

  30. Laben CA, Brower BV (2000) Process for enhancing the spatial resolution of multispectral imagery using pansharpening: United States, 6011875[P]. 04 Jan 2000

  31. Carper W, Lillesand T, Kiefer R (1990) The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm Eng Remote Sens 56(4):459–467

    Google Scholar 

  32. Meng XC, Li J, Shen HF et al (2016) Pansharpening with a guided filter based on three-layer decomposition. Sensors 16(7):1068

    Article  Google Scholar 

  33. Ranchin T, Wald L (2000) Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm Eng Remote Sens 66(1):49–61

    Google Scholar 

  34. Aiazzi B, Alparone L, Baronti S, Garzelli A (2006) MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm Eng Remote Sens 72(5):591–596

    Article  Google Scholar 

  35. Li WJ, Wen WP, Wang QH (2015) A study of remote sensing image fusion method based on Contourlet transform. Remote Sens Land Resources 27(2):44–50. https://doi.org/10.6046/gtzyyg.2015.02.07

    Article  MathSciNet  Google Scholar 

  36. Tu TM, Su SC, Shyu HC et al (2001) A new look at IHS-like image fusion methods. Inf Fusion 2(3):177–186

    Article  Google Scholar 

  37. Joyce X. Deep learning for object detection: a comprehensive review [EB/OL]. https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9. 12 Sept 2017/28 May 2019

  38. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR 2014

  39. Thomas C, Ranchin T, Wald L, Chanussot J (2008) Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. IEEE Trans Geosci Remote Sens 46(5):1301–1312

    Article  Google Scholar 

  40. Tu T-M, Huang PS, Hung C-L, Chang C-P (2004) A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geosci Remote Sens Lett 1(4):309–312

    Article  Google Scholar 

  41. Gillespie R, Kahle AB, Walker RE (1987) Color enhancement of highly correlated images—II. Channel ratio and “Chromaticity” transform techniques. Remote Sens Environ 22(3):343–365

    Article  Google Scholar 

  42. Chavez PS Jr, Kwarteng AW (1989) Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm Eng Remote Sens 55(3):339–348

    Google Scholar 

  43. Aiazzi B, Baronti S, Selva M (2007) Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans Geosci Remote Sens 45(10):3230–3239

    Article  Google Scholar 

  44. Garzelli A, Nencini F, Capobianco L (2008) Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans Geosci Remote Sens 46(1):228–236

    Article  Google Scholar 

  45. Choi J, Yu K, Kim Y (2011) A new adaptive component-substitution based satellite image fusion by using partial replacement. IEEE Trans Geosci Remote Sens 49(1):295–309

    Article  Google Scholar 

  46. Dou W, Chen Y, Li X, Sui D (2007) A general framework for component substitution image fusion: an implementation using fast image fusion method. Comput Geosci 33(2):219–228

    Article  Google Scholar 

  47. Schowengerdt RA (1997) Remote sensing: models and methods for imageprocessing, 2nd edn. Academic, Orlando, FL

    Google Scholar 

  48. Liu JG (2000) Smoothing filter based intensity modulation: a spectral preserve image fusion technique for improving spatial details. Int J Remote Sens 21(18):3461–3472

    Article  Google Scholar 

  49. Wald L, Ranchin T (2002) Comment: Liu ‘Smoothing filter-based intensitymodulation: a spectral preserve image fusion technique for improving spatial details’. Int J Remote Sens 23(3):593–597

    Article  Google Scholar 

  50. Khan MM, Chanussot J, Condat L, Montavert A (2008) Indusion: fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci Remote Sens Lett 5(1):98–102

    Article  Google Scholar 

  51. Aiazzi B, Alparone L, Baronti S, Garzelli A, Selva M (2003) An MTF-based spectral distortion minimizing model for pan-sharpening of very high resolution multispectral images of urban areas. In: Proceedings on 2nd GRSS/ISPRS joint workshop on remote sensing and data fusion over urban areas, pp 90–94

  52. Xia GS, Bai X, Ding J et al (2017) DOTA: a large-scale dataset for object detection in aerial images. arXiv:1711.10398

  53. Alparone L et al (2007) Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data fusion contest. IEEE Trans Geosci Remote Sens 45(10):3012–3021

    Article  Google Scholar 

  54. Dstl Satellite Imagery Feature Detection[EB/OL]. https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection. 08 March 2017/28 May 2019

  55. IEEE GRSS Data Fusion Contest [EB/OL]. http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/. 28 May 2019

Download references

Acknowledgements

This work is jointly supported by National Natural Science Foundation of China (Grant Nos. 61673262, 61603249), and key project of Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1401100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ya, Y., Pan, H., Jing, Z. et al. Fusion object detection of satellite imagery with arbitrary-oriented region convolutional neural network. AS 2, 163–174 (2019). https://doi.org/10.1007/s42401-019-00033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42401-019-00033-x

Keywords

Navigation