Skip to main content
Log in

Robust Fuzzy On–Off Synthesis Controller for Maximum Power Point Tracking of Wind Energy Conversion

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Due to the major discrepancy between the exigent demands regarding the electrical energy quality and the irregular nature of the wind, which is characterized by random and instantaneous speed variations, it is vital to determine the optimal operating point that maximizes the efficiency of the obtained electrical energy in the grid from wing generators. The present paper addressed the above-mentioned problem by introducing a fuzzy logic control system in the standard on–off control strategy. The purpose is to maximize the power point tracking of wind energy and to reduce the mechanical loads in which variable wind speed is considered. This idea has the ability to drive the conversion system to its optimal operating point, thereby solving the switching component problem (also referred to as the chattering problem) of the standard on–off control strategy. To examine the validity of the proposed idea, the obtained results are compared with those given by the standard on–off control strategy wherein our method can ensure a better dynamic behavior of the wind energy conversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Lokhriti, I. Salhi, S. Doubabiand, Y. Zidani, ISA Trans. 55, 406 (2012). https://doi.org/10.1016/j.isatra.2012.11.002

    Google Scholar 

  2. R. Saidur, M.R. Islam, N.A. Rahim, K.H. Solangi, Renew. Sustain. Energy Rev. 14, 1744 (2010). https://doi.org/10.1016/j.rser.2010.03.007

    Article  Google Scholar 

  3. K.C. Tseng, C.C. Huang, IEEE Trans. Ind. Electron. 61, 1311 (2013). https://doi.org/10.1109/TIE.2013.2261036

    Article  Google Scholar 

  4. F.D. Kanellos, N.D. Hatziargyriou, IEEE Trans. Energy Convers. 25, 1142 (2010). https://doi.org/10.1109/tec.2010.2048216

    Article  Google Scholar 

  5. M. Sedraoui, D. Boudjehem, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226, 1274 (2012). https://doi.org/10.1177/0959651812452480

    Article  Google Scholar 

  6. W. Meng, Q. Yang, Y. Ying, Y. Sun, Z. Yang, Y. Sun, IEEE Trans. Energy Convers. 28, 716 (2013). https://doi.org/10.1109/TEC.2013.2273357

    Article  Google Scholar 

  7. J. Chen, C. Gong, IEEE Trans. Ind. Electron. 68, 4022 (2013). https://doi.org/10.1109/TIE.2013.2284148

    Google Scholar 

  8. S. Tunyasrirut, B. Wangsilabatra, C. Charumit, T. Suksri, Energy Procedia 9, 128 (2011). https://doi.org/10.1016/j.egypro.2011.09.014

    Article  Google Scholar 

  9. B. Sawetsakulanond, V. Kinnares, Energy 35, 4975 (2010). https://doi.org/10.1016/j.energy.2010.08.027

    Article  Google Scholar 

  10. J.M. Espi, J. Castello, IEEE Trans. Ind. Electron. 60, 919 (2012). https://doi.org/10.1109/TIE.2012.2190370

    Article  Google Scholar 

  11. A.M. Eltamaly, H.M. Farh, Electr. Power Syst. Res. 97, 144 (2013). https://doi.org/10.1016/j.epsr.2013.01.001

    Article  Google Scholar 

  12. I. Munteanu, A.I. Bractu, E. Ceanga, Handbook of Wind Power Systems (Springer, Berlin, 2013)

    Google Scholar 

  13. M.A. Abdullah, A.H.M. Yatim, C.W. Tan, R. Saidur, Renew. Sustain. Energy Rev. 16, 3220 (2012). https://doi.org/10.1016/j.rser.2012.02.016

    Article  Google Scholar 

  14. A.M. Knight, G.E. Peters, IEEE Trans. Energy Convers. 20, 459 (2005). https://doi.org/10.1109/TEC.2005.847995

    Article  Google Scholar 

  15. M. Nasiri, J. Milimonfared, S.H. Fathi, Energy Convers. Manag. 86, 892 (2014). https://doi.org/10.1016/j.enconman.2014.06.055

    Article  Google Scholar 

  16. S. Ganjefar, A. Ghassemi, M.M. Ahmadi, Energy 67, 444 (2014). https://doi.org/10.1016/j.energy.2014.02.023

    Article  Google Scholar 

  17. A. Chakraborty, Renew. Sustain. Energy Rev. 15, 1816 (2011). https://doi.org/10.1016/j.rser.2010.12.005

    Article  Google Scholar 

  18. M.J. Duran, F. Barrero, A. Pozo-ruz, F. Guzman, J. Fernandez, H. Guzman, IEEE Trans. Educ. 56, 174 (2012). https://doi.org/10.1109/TE.2012.2207119

    Article  Google Scholar 

  19. G.D. Moor, H.J. Beukes, IEEE 35th Annual Power Electronics Specialists Conference, 2044 (2004). https://doi.org/10.1109/pesc.2004.1355432

  20. J.W. Wingerden, A. Hulskamp, T. Barlas, I. Houtzager, H. Bersee, G. Van kuik, M. Verhaegen, IEEE Trans. Control Syst. Technol. 19, 284 (2010). https://doi.org/10.1109/TCST.2010.2051810

    Article  Google Scholar 

  21. B. Boukhezzar, L. Lupu, H. Siguerdidjane, M. Hand, Renew. Energy 32, 1273 (2006). https://doi.org/10.1016/j.renene.2006.06.010

    Article  Google Scholar 

  22. M. Aidoud, M. Sedraoui, A. Lachouri, A. Boualleg, J. Braz. Soc. Mech. Sci. Eng. 38, 2181 (2016). https://doi.org/10.1007/s40430-015-0406-5

    Article  Google Scholar 

  23. K. Ouari, M. Ouhrouche, T. Rekioua, N. Taib, J. Electr. Eng. 65, 333 (2015). https://doi.org/10.2478/jee-2014-0055

    Google Scholar 

  24. S.M. Kazraji, M.B.B. Sharifian, Adv. Electr. Electron. Eng. 13, 1 (2015). https://doi.org/10.15598/aeee.v13i1.999

    Google Scholar 

  25. S. Abdeddaim, A. Betka, S. Drid, M. Becherif, Energy Convers. Manag. 79, 281 (2013). https://doi.org/10.1016/j.enconman.2013.12.003

    Article  Google Scholar 

  26. S. Kahla, Y. Soufi, M. Sedraoui, M. Bechouat, Int. J. Hydrogen Energy 40, 13749 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.007

    Article  Google Scholar 

  27. W.M. Lin, C.H. Hong, T.C. Ou, T.M. Chiu, Energy Convers. Manag. 52, 1244 (2010). https://doi.org/10.1016/j.enconman.2010.09.020

    Article  Google Scholar 

  28. M. Kesraoui, N. Korichi, A. Belkadi, Renew. Energy 36, 2655 (2010). https://doi.org/10.1016/j.renene.2010.04.028

    Article  Google Scholar 

  29. H.T. Jadhav, R. Roy, Int. J. Electr. Power Energy Syst. 49, 8 (2013). https://doi.org/10.1016/j.ijepes.2012.11.020

    Article  Google Scholar 

  30. B. Boukhezzar, H. Siguerdidjane, Energy Convers. Manag. 50, 885 (2009). https://doi.org/10.1016/j.enconman.2009.01.011

    Article  Google Scholar 

  31. C. Belfadel, S. Gherbi, M. Sdraoui, S. Moreau, G. Champenois, T. Allaoui, M.A. Denai, Electr. Power Syst. Res. 80, 230 (2010). https://doi.org/10.1016/j.epsr.2009.09.002

    Article  Google Scholar 

  32. K. Idjdarene, D. Rekioua, T. Rekioua, A. Tounzi, Analog Integr. Circuits Sig. Process. 69, 67 (2011). https://doi.org/10.1007/s10470-011-9629-2

    Article  Google Scholar 

  33. R. Datta, V.T. Ranganathan, IEEE Trans. Energy Convers. 17, 414 (2002). https://doi.org/10.1109/TEC.2002.801993

    Article  Google Scholar 

  34. R. Rocha, L.S.M. Filho, M.V. Bortolus, in Proceedings of the 44th IEEE Conference on Decision and Control, 7906 (2005). https://doi.org/10.1109/cdc.2005.1583440

  35. H. Liu, S. Li, J. Cao, G. Li, A. Alsaedi, F.E. Alsaadi, Neurocomputing 219, 422 (2017). https://doi.org/10.1016/j.neucom.2016.09.050

    Article  Google Scholar 

  36. Y. Pan, Y. Zhou, T. Sun, M.J. Er, Neurocomputing 99, 15 (2013). https://doi.org/10.1016/j.neucom.2012.05.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the Pervasive Artificial Intelligence (PAI) group of the Department of Informatics,University of Fribourg, Switzerland, for their valuable suggestions and comments that helped us to improve this paper. Special thanks to owed to Prof. Bat Hirsbrunner, Prof. Michèle Courant, Prof. Babouri Abdesselam, and Prof. Khettabi Riad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Kahla.

Appendix

Appendix

See Tables 2, 3.

Table 2 Parameters of the induction generator
Table 3 Parameters of the wind turbine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahla, S., Sedraoui, M., Bechouat, M. et al. Robust Fuzzy On–Off Synthesis Controller for Maximum Power Point Tracking of Wind Energy Conversion. Trans. Electr. Electron. Mater. 19, 146–156 (2018). https://doi.org/10.1007/s42341-018-0017-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0017-9

Keywords

Navigation