Skip to main content
Log in

Fabrication of Al foam without thickening process through melt-foaming method

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

By using calcium carbonate (CaCO3) powder as the blowing agent, Al foams with porosities of ~ 60 to 85% and pore size of ~ 1.5 mm were fabricated via melt-foaming method. Instead of adding a thickening agent to increase Al melt viscosity, a small amount of Mg ingot (5.0 wt%) was added first, and then Al melt was foamed by adding calcium carbonate via the impellor stirring. The effect of Mg addition on the gas release behavior of calcium carbonate in the Al melt was investigated. The compression behavior of fabricated Al foams was examined. The results show that the blowing gas is possibly from the reaction between Mg and calcium carbonate, and this reaction can produce solid oxides with micrometer level size, which leads to increasing the Al melt viscosity and is beneficial for inhibiting pores coarsening. Besides, the micrometer level cracks in the cell walls make the strength of Al foam decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Banhart, Prog. Mater. Sci. 46 (2001) 559–632.

    Article  Google Scholar 

  2. J. Banhart, Adv. Eng. Mater. 15 (2013) 82–111.

    Article  Google Scholar 

  3. S.F. Liu, A. Li, Y.J. Ren, D.F. Li, Z.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 556–560.

    Article  Google Scholar 

  4. S.F. Liu, Z.P. Xi, H.P. Tang, X. Yang, Z.H. Zhang, J. Iron Steel Res. Int. 21 (2014) 793–796.

    Article  Google Scholar 

  5. S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed Metal and Method of Producing Same, European Patent, 0210803, 1989.

  6. S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed Metal and Method of Producing Same, US, 4713277, 1987.

  7. D.H. Yang, J.Q. Chen, H. Wang, J.H. Jiang, A.B. Ma, Z.P. Lu, J. Mater. Sci. Technol. 31 (2015) 361–368.

    Article  Google Scholar 

  8. D.H. Yang, B.Y. Hur, D.P. Hur, S.R. Yang, Mater. Sci. Eng. A 445–446 (2007) 415–426.

    Article  Google Scholar 

  9. D.W. Li, J. Li, T. Li, T. Sun, X.M. Zhang, G.C. Yao, Trans. Nonferrous Met. Soc. China 21(2011) 346–352.

    Article  Google Scholar 

  10. A. Aldoshan, S. Khanna, Mater. Sci. Eng. A 689 (2017) 17–24.

    Article  Google Scholar 

  11. S. Birla, D.P. Mondal, S. Das, A. Khare, J.P. Singh, Mater. Des. 117 (2017) 168–177.

    Article  Google Scholar 

  12. L. Salvo, G. Martin, M. Suard, A. Marmottant, R. Dendievel, J.J. Blandin, C. R. Phys. 15 (2014) 662–673.

    Article  Google Scholar 

  13. F. Von Zepplin, M. Hirscher, H. Stanzick, J. Banhart, Compos. Sci. Technol. 63 (2003) 2293–2300.

    Article  Google Scholar 

  14. N.V.R. Kumar, N.R. Rao, B. Sudhakar, A.A. Gokhale, Mater. Sci. Eng. A 527(2010) 6082–6090.

    Article  Google Scholar 

  15. J.A. Liu, Q.X. Qu, Y.Liu, R.G. Li, B. Liu, J. Alloy. Compd. 676 (2016) 239–244.

    Article  Google Scholar 

  16. S. Kumar, O.P. Pandey, J. Manuf. Process. 20 (2015) 172–180.

    Article  Google Scholar 

  17. D.P. Mondal, N. Jha, B. Gull, S. Das, A. Badkul, Mater. Sci. Eng. A 560 (2013) 601–610.

    Article  Google Scholar 

  18. M.G. Nava, A. Cruz-Ramírez, M.Á.S. Rosales, V.H. Gutiérrez-Pérez, A. Sánchez-Martínez, J. Alloy. Compd. 698 (2017) 1009–1017.

    Article  Google Scholar 

  19. L.E.G. Cambronero, J.M. Ruiz-Roman, F.A. Corpas, J.M.R. Prieto, J. Mater. Process. Technol. 209 (2009) 1803–1809.

    Article  Google Scholar 

  20. V. Gergely, D.C. Curran, T.W. Clyne, Compos. Sci. Technol. 63 (2003) 2301–2310.

    Article  Google Scholar 

  21. Y.R. Luo, S.R. Yu, W. Li, J.A. Liu, M. Wei, J. Alloy. Compd. 460 (2008) 294–298.

    Article  Google Scholar 

  22. A.V. Byakova, S.V. Gnyloskurenko, T. Nakamura, Metals 2 (2012) 95–112.

    Article  Google Scholar 

  23. A.V. Byakova, S.V. Gnyloskurenko, A.I. Sirko, Y.V. Milman, T. Nakamura, Mater. Trans. JIM. 47 (2006) 2131–2136.

    Article  Google Scholar 

  24. D.H. Yang, B.Y. Hur, S.R. Yang, J. Alloy. Compd. 461 (2008) 221–227.

    Article  Google Scholar 

  25. G.Q. Luo, H. Hao, F.Y. Wang, X.G. Zhang, Trans. Nonferrous Met. Soc. China 23 (2013) 1832–1837.

    Article  Google Scholar 

  26. P.F. Li, N.V. Nguyen, H. Hao, Mater. Des. 89 (2016) 636–641.

    Article  Google Scholar 

  27. J. Wang, Z. Zhang, Q. Jiang, X.C. Xia, C.R. Qiu, J. Ding, W.M. Zhao, Mater. Lett. 193 (2017) 187–190.

    Article  Google Scholar 

  28. X.C. Xia, W.M. Zhao, X.Z. Feng, H. Feng, X. Zhang, Mater. Des. 49 (2013) 19–24.

    Article  Google Scholar 

  29. D.H. Yang, Z.Y. Hu, W.P. Chen, J. Lu, J.Q. Chen, H. Wang, L. Wang, J.H. Jiang, A.B. Ma, J. Manuf. Process. 22 (2016) 290–296.

    Article  Google Scholar 

  30. D.H. Yang, J.Q. Chen, W.P. Chen, L. Wang, H. Wang, J.H. Jiang, A.B. Ma, J. Mater. Sci. Technol. 33 (2017) 1141–1146.

    Article  Google Scholar 

  31. D.H. Yang, W.P. Chen, Z.Y. Hu, J.Q. Chen, J.H. Jiang, A.B. Ma, A Powder Metallurgical Method of Fabricating Zinc Alloy Foam, China, ZL201510163987.3, 2015.

  32. D.H. Yang, Z.Y. Hu, W.P. Chen, J.Q. Chen, J.H. Jiang, A.B. Ma, A Powder Metallurgical Method of Fabricating Mg Alloy Foam, China, ZL 201410231349.6, 2014.

  33. Z.L. Song, J.S. Zhu, L.Q. Ma, D.P. He, Mater. Sci. Eng. A 298 (2001) 137–143.

    Article  Google Scholar 

  34. J. Banhart, Adv. Eng. Mater. 8 (2006) 781–794.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171437), the Fundamental Research Funds for the Central Universities (Grant No. 2016B06614), the Research Project of University of Science and Technology Beijing (USTB) (Grant No. 2015-Z06). The Guiding Capital for Industrial Development Project of Suqian and National Natural Science Foundation of China (No. 11472098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-hui Yang.

Appendix

Appendix

The fusion heats of Al and Mg are 10.71 and 8.48 kJ/mol, respectively. The reaction enthalpy of Mg + CaCO3 = MgO + CaO + CO↑ is − 136.74 kJ/mol. The mass ratio among Al, Mg and CaCO3 is 100:4.8:20, then the corresponding molar ratio among Al, Mg and CaCO3 is (100/27):(4.8/24):(20/100). Therefore, the ratio between the endothermic value caused by Al and Mg fusion and the exothermic value caused by the liquid–solid reaction of Mg + CaCO3 = MgO + CaO + CO↑ is, [10.71·(100/27) + 8.48·(4.8/24)]:[136.74·(20/100)] ≈ 1.51:1. Consequently, there is no exothermic peak appearing in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Dh., Chen, Jq., Wang, L. et al. Fabrication of Al foam without thickening process through melt-foaming method. J. Iron Steel Res. Int. 25, 90–98 (2018). https://doi.org/10.1007/s42243-017-0011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0011-1

Keywords

Navigation