Skip to main content
Log in

An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In the present paper, we first introduce and investigate the generalized extended Mittag-Leffler (GEML) function which is represented in the following manner:

$$\begin{aligned}&E_{\delta , \kappa }^{\vartheta ; d}(z; q, \rho , \zeta )= \sum \limits _{n=0}^{\infty }\frac{B_{q}^{(\rho , \zeta )}(\vartheta +n, d-\vartheta )}{B(\vartheta , d-\vartheta )}\frac{(d)_{ n}}{\Gamma (\delta n+ \kappa )} \frac{z^{n}}{n!}\\ &\left( \begin{array}{cc} {\mathfrak{R}}(d)> {\mathfrak{R}}(\vartheta )> 0, {\mathfrak{R}}(\delta )> 0,{\mathfrak{R}}(\kappa )> 0, \\ {\mathfrak{R}}(q) \ge 0,\, \text{min}\left\{ {\mathfrak{R}}(\vartheta +n), {\mathfrak{R}}(d-\vartheta ), {\mathfrak{R}}(\rho ), {\mathfrak{R}}(\zeta )\right\} > 0 \end{array}\right) \end{aligned}$$

and propose some of it’s integral representations. Next, we present fractional calculus of function of our study. Further, we introduce and study an integral operator whose kernel is generalized extended Mittag-Leffler (GEML) function and point out it’s known special cases. Next, we derive some properties of aforementioned integral operator which includes it’s composition relationship with right-sided Riemann–Liouville fractional integral operator \(I^{\gamma }_{a+}\) and boundedness. Finally, we obtain image of \((\tau -a)^{\alpha -1}\Phi _{l_{j};\upsilon _{j}Q}^{k_{j};\varrho _{j}P}(\beta \tau ,s,a)\) under integral operator of our study. The results derived in this paper generalizes the results obtained by Özarslan and Yilmaz (J Inequal Appl 85:1–10, 2014) and Rahman et al. (Sociedad Matemática Mexican. https://doi.org/10.1007/s40590-017-0167-5, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camargo, R.F., E. Capelas de Oliveira, and J. Vaz. 2012. On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Mathematical Physics Analysis and Geometry 15 (1): 1–16.

    Article  MathSciNet  Google Scholar 

  2. Džrbašjan, M.M. 1966. Integral Transforms and Representations of Functions in the Complex Domain. Moscow: Nauka (in Russian).

    Google Scholar 

  3. Gorenflo, R., and F. Mainardi. 1997. Fractional calculus: integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics. Springer Series on CSM Courses and Lectures, vol. 378, ed. A. Carpinteri, and F. Mainardi, 223–276. Vienna: Springer.

    Chapter  Google Scholar 

  4. Gorenflo, R., F. Mainardi, and H.M. Srivastava. 1998. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18–23, 1997), ed. D. Bainov, 195–202. Utrecht: VSP Publishers.

  5. Hilfer, R. (ed.). 2000. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Company.

    MATH  Google Scholar 

  6. Hilfer, R. 2000. Fractional time evolution. In Applications of Fractional Calculus in Physics, ed. R. Hilfer. Singapore: World Scientific Publishing Company.

    Chapter  Google Scholar 

  7. Kilbas, A.A., and M. Saigo. 1996. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transforms and Special Functions 4: 355–370.

    Article  MathSciNet  Google Scholar 

  8. Kilbas, A.A., H.M. Srivastava, and J.J. Trujillo. 2006. Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Amsterdam: Elsevier (North-Holland) Science Publishers.

    Google Scholar 

  9. Kilbas, A.A., M. Saigo, and R.K. Saxena. 2004. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms and Special Functions 15: 31–49.

    Article  MathSciNet  Google Scholar 

  10. Kumar, D., J. Singh, and D. Baleanu. 2018. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dynamics 91: 307–317.

    Article  MathSciNet  Google Scholar 

  11. Kumar, D., J. Singh, and D. Baleanu. 2018. Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A 492: 155–167.

    Article  MathSciNet  Google Scholar 

  12. Mathai, A.M., and H.J. Haubold. 2010. Special Functions for Applied Sciences. Berlin: Springer.

    Google Scholar 

  13. Mittag-Leffler, G.M. 1903. Sur la nouvelle fonction \(E_{\alpha }(x)\). Comptes Rendus de l’Académie des sciences Paris 137: 554–558.

    MATH  Google Scholar 

  14. Miller, K.S., and B. Ross. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: A Wiley-Interscience Publication, Wiley.

    MATH  Google Scholar 

  15. Özarslan, M.A., and B. Yilmaz. 2014. The extended Mittag Leffler function and its properties. Journal of Inequalities and Applications 85: 1–10.

    MathSciNet  MATH  Google Scholar 

  16. Özergin, E., M.A. Özarslan, and A. Altin. 2011. Extension of gamma, beta and hypergeometric functions. Journal of Computational and Applied Mathematics 235: 4601–4610.

    Article  MathSciNet  Google Scholar 

  17. Prabhakar, T.R. 1971. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Mathematical Journal 19: 7–15.

    MathSciNet  MATH  Google Scholar 

  18. Rahman, G., P. Agarwal, S. Mubeen, and M. Arshad. 2017. Fractional integral operators involving extended Mittag-Leffler function as its kernel. Sociedad Matemática Mexican. https://doi.org/10.1007/s40590-017-0167-5.

    Article  MATH  Google Scholar 

  19. Rainville, E.D. 1960. Special Functions. New York: Macmillan.

    MATH  Google Scholar 

  20. Singh, J., D. Kumar, and D. Baleanu. 2018. An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Applied Mathematics and Computation 335: 12–24.

    Article  MathSciNet  Google Scholar 

  21. Singh, J., D. Kumar, and D. Baleanu. 2017. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos 27: 103113.

    Article  MathSciNet  Google Scholar 

  22. Samko, S.G., A.A. Kilbas, and O.I. Marichev. 1993. Fractional Integrals and Derivatives, Theory and Applications. Yverdon: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  23. Shukla, A.K., and J.C. Prajapati. 2007. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336: 797–811.

    Article  MathSciNet  Google Scholar 

  24. Srivastava, H.M. 2011. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Applied Mathematics and Information Sciences 5: 390–444.

    MathSciNet  Google Scholar 

  25. Srivastava, H.M., P. Agarwal, and S. Jain. 2014. Generating functions for the generalized Gauss hypergeometric functions. Applied Mathematics and Computation 247: 348–352.

    Article  MathSciNet  Google Scholar 

  26. Srivastava, H.M., and J. Choi. 2001. Series Associated with the Zeta and Related Functions. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  27. Srivastava, H.M., and J. Choi. 2012. Zeta and q-Zeta Functions and Associated Series and Integrals. Amsterdam: Elsevier Science Publishers.

    MATH  Google Scholar 

  28. Srivastava, H.M., D. Jankov, T.K. Pogány, and R.K. Saxena. 2011. Two-sided inequalities for the extended Hurwitz–Lerch Zeta function. Computers & Mathematics with Applications 62: 516–522.

    Article  MathSciNet  Google Scholar 

  29. Srivastava, H.M., R.K. Saxena, T.K. Pogány, and R. Saxena. 2011. Integral and computational representations of the extended Hurwitz–Lerch Zeta function. Integral Transforms and Special Functions 22: 487–506.

    Article  MathSciNet  Google Scholar 

  30. Srivastava, H.M., and Ž. Tomovski. 2009. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation 211: 198–210.

    Article  MathSciNet  Google Scholar 

  31. Wiman, A. 1905. Über den fundamental Satz in der Theorie der Funktionen \(E_{\alpha }(x)\). Acta Mathematica 29: 191–201.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this article.

Human/animals participation

The authors declare that there is no research involving human participants and/or animals in the content this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M.K., Jolly, N., Jain, R. et al. An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results. J Anal 27, 727–740 (2019). https://doi.org/10.1007/s41478-018-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-018-0119-0

Keywords

Mathematics Subject Classification

Navigation