Journal of Plant Diseases and Protection

, Volume 125, Issue 3, pp 273–285 | Cite as

The socioeconomic benefits of biological control of western corn rootworm Diabrotica virgifera virgifera and wireworms Agriotes spp. in maize and potatoes for selected European countries

  • Emmanuel O. BenjaminEmail author
  • Giselher Grabenweger
  • Hermann Strasser
  • Justus Wesseler
Original Article


Innovative biological pest control of the western corn rootworm (WCR) Diabrotica virgifera virgifera and wireworms Agriotes spp. in maize and potato cultivation in Europe is driven by (1) the economic damages caused and (2) the restrictions on chemical pesticides. We analyze the efficacy of biological control agents for WCR and wireworms based on European field trails. A partial equilibrium displacement model is used to estimate the changes in producer and consumer surplus for France, Italy, Spain, Germany, Austria and Romania given different adoption ceiling and adoption speed. Furthermore, the benefit of a potential reduction in pesticide use due to biological control application is evaluated. The results suggest a total annual welfare gain of ca. €190 million from biocontrol of WCR in maize production for the countries under consideration at an adoption ceiling and adoption speed of 30% and 2.41, respectively. In potato production, an annual welfare gain of over €2 million may be recorded in ecological and/or organic cultivation. Overall, the biological control methods provide an economical alternative in maize and can contribute to increase the competitiveness of European Union (EU) agriculture, while they look promising for certified organic potato production at the current level of control efficiency.


Diabrotica virgifera virgifera Wireworms Agriotes spp. Integrated pest management (IPM) Biological control agents Socioeconomic welfare gain 



We would like to thank Prof. Stefan Vidal, Dr. Mario Schumann and Dr. Michael Brandl of the Georg-August-Universität Göttingen, Germany.


This study was funded by the European Commission [Grant Number 282767, 2012].

Compliance with ethical standards

Conflict of interest

Emmanuel O. Benjamin declares that he has no conflict of interest. Giselher Grabenweger declares that he has no conflict of interest. Hermann Strasser declares that he has no conflict of interest. Justus Wesseler declares that he has no conflict of interest.


  1. Alston JM, Norton GW, Pardey PG (1995) Science under scarcity: principles and practice for agricultural research evaluation and priority setting. Cornell University Press for the International Service for National Agricultural Research (ISNAR), New YorkGoogle Scholar
  2. Amoabeng BW, Gurr GM, Gitau CW, Stevenson PC (2014) Cost:benefit analysis of botanical insecticide use in cabbage: implications for smallholder farmers in developing countries. Crop Prot 57:17–76CrossRefGoogle Scholar
  3. Andreyeva T, Long MW, Brownell KD (2010) The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food. Am J Public Health 100(2):216–222. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ansari MA, Evans M, Butt TM (2009) Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop Prot 28:269–272CrossRefGoogle Scholar
  5. Banse M, Grethe H, Nolte S (2005) European simulation model (ESIM) in GAMS: model documentation. Model documentation prepared for DG AGRI, European Commission, Göttingen and BerlinGoogle Scholar
  6. Baufeld P, Enzian S (2005) Maize growing, maize high-risk areas and potential yield losses due to western corn rootworm (Diabrotica virgifera virgifera) damage in selected European countries. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm ecology and management. CABI Publishing, U.K., pp 285–302CrossRefGoogle Scholar
  7. Benjamin EO, Wesseler J (2016) A socioeconomic analysis of biocontrol in integrated pest management: a review of the effects of uncertainty, irreversibility and flexibility. NJAS-Wageningen J Life Sci 77:53–60CrossRefGoogle Scholar
  8. Brandl MA, Schumann M, French BW, Vidal S (2016) Screening of botanical extracts for repellence against western corn rootworm larvae. J Insect Behav 29:395–414CrossRefGoogle Scholar
  9. Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2017) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci 90(2):479–493CrossRefGoogle Scholar
  10. Burniaux J, Delorme F, Lienert I, Martin JP (1990) Walras—A multi-sector, multi-country applied general equilibrium model for quantifying the economy-wide effects of agricultural policies: a technical manual. OECD Economics Department Working Papers, No. 84, OECD Publishing, ParisGoogle Scholar
  11. Canali S, Ciaccia C, Tittarelli F (2012) Soil fertility management in organic potato: the role of green manure and amendment applications. In: He Z, Larkin R, Honeycutt W (eds) Sustainable potato production: global case studies. Springer, Heidelberg, pp 453–469CrossRefGoogle Scholar
  12. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366(1573):1987–1998CrossRefGoogle Scholar
  13. Demont M, Wesseler J, Tollens E (2004) Biodiversity versus transgenic suger beet: the one euro question. Eur Rev Agric Econ 31(1):1–18CrossRefGoogle Scholar
  14. Dillen K, Mitchell PD, Tollens E (2009) On the competitiveness of Diabrotica virgifera virgifera damage abatement strategies in Hungary: a bio-economic approach. J Appl Entomol 134:395–408CrossRefGoogle Scholar
  15. ECB (2015) Euro area 10-year Government Benchmark bond yield – Yield. Accessed March 2015
  16. ECB (2017) European Central Bank—Statistical Data Warehouse—Quick View. Accessed May 2016
  17. Eckard S, Ansari MA, Bacher S, Butt TM, Enkerli J, Grabenweger G (2014) Virulence of in vivo and in vitro produced conidia of Metarhizium brunneum strains for control of wireworms. Crop Prot 64:137–142CrossRefGoogle Scholar
  18. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology. Biocontrol 46:387–400CrossRefGoogle Scholar
  19. European commission (2005) Organic farming in the European Union- Facts and Figures. Accessed February 2014
  20. Eurostat (2002) Handbook for EU agricultural price statistics. Accessed January 2014
  21. Eurostat (2016a) Agriculture Data—Main Table. Accessed October 2016
  22. Eurostat (2016b) The EU potato sector—statistics on production, prices and trade.,_prices_and_trade. Accessed October 2016
  23. Furlan L (1998) The biology of Agriotes ustulatus Schäller (Col., Elateridae). II. Larval development, pupation, whole cycle description and practical implications. J Appl Entomol 122:71–78CrossRefGoogle Scholar
  24. Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128:696–706CrossRefGoogle Scholar
  25. Ghadimi SA, Fami HS, Asadi A, Porghasem F (2015) Organic farming of potato in Iran. In: Lichtfouse E (ed) Sustianble agriculture reviews. Springer, New York, pp 273–293CrossRefGoogle Scholar
  26. Hogg D (2004) Cost and benefit of bioprocesses in waste management. In: Lens P, Hamelers B, Hoitink H, Bidlingmaier W (eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, pp 95–119Google Scholar
  27. Humbert P, Przyklenk M, Vemmer M, Patel AV (2017a) Calcium gluconate as cross-linker improves survival and shelf life of encapsulated and dried Metarhizium brunneum and Saccharomyces cerevisiae for the application as biological control agents. J Microencapsul 34(1):47–56. CrossRefPubMedGoogle Scholar
  28. Humbert P, Vemmer M, Giampà M, Bednarz H, Niehaus K, Patel AV (2017b) Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release. World J Microbiol Biotechnol 33(4):71. CrossRefPubMedGoogle Scholar
  29. Jackson J, Hesler L (1995) Placement and application rate of the nematode Steinernema carpocapsae (Rhabditida:Steinernematidae) for suppression of the western corn rootworm (Coleoptera: Chrysomelidae). J Kansas Entomol Soc 68(4):461–467Google Scholar
  30. Jansson T, Heckelei T (2011) Estimating a primal model of regional crop supply in the European Union. J Agric Econ 62(1):137–152CrossRefGoogle Scholar
  31. Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185CrossRefGoogle Scholar
  32. Kiss J, Ewards CR et al (2005) Monitoring of western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992–2003. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm ecology and management. CABI Publishing, U.K., pp 29–40CrossRefGoogle Scholar
  33. Kleespies RG, Ritter C, Zimmermann G, Burghause F, Feiertag S, Leclerque A (2013) A survey of microbial antagonists of Agriotes wireworms from Germany and Italy. J Pest Sci 86:99–106CrossRefGoogle Scholar
  34. Klug P (2014) Geselliges Treiben Der Maiswurzelbohrer wird heimisch. Der Pflanzenarzt 67(3):12–14Google Scholar
  35. Knoema (2017) Certified organic crop production from fully converted areas by crops products. Accessed May 2017
  36. Kuhlmann U, van der Burgt WACM (1998) Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News Inform 19:59–68Google Scholar
  37. Kwizda (2015) Belem 0,8 MG – gegen Maiswurzelbohrer und Drahtwurm. Accessed November 2015
  38. Lampman RL, Metcalf RL, Andersen JF (1987) Semiochemicals attractants of Diabrotica undecimpunctata howardi Barber, Southern corn rootworm, and Diabrotica virgifera virgifera leconte, the western corn rootworm (Coleoptera: Chrysomelidae). J Chem Ecol 13(4):959–975CrossRefPubMedGoogle Scholar
  39. Lance DR (1988) Responses of northern and western corn rootworms to semiochemical attractants in corn fields. J Chem Ecol 14(4):1177–1185CrossRefPubMedGoogle Scholar
  40. Parker WE, Howard JJ (2001) The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric For Entomol 3(2):85–98CrossRefGoogle Scholar
  41. Pilz C, Wegensteiner R, Keller S (2007) Selection of entomopathogenic fungi for the control of the western corn rootworm Diabrotica virgifera virgifera. J Appl Entomol 131:426–431CrossRefGoogle Scholar
  42. Pretty J, Brett C, Gee D, Hine R et al (2001) Policy challenges and priorities for internalizing the externalities of modern agriculture. J Environ Planning Manage 44(2):263–283CrossRefGoogle Scholar
  43. Przyklenk M, Vemmer M, Hanitzsch M, Patel AV (2017) A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. J Microencapsul 34(5):498–512. CrossRefPubMedGoogle Scholar
  44. Rauch H, Steinwender BM et al (2017) Efficacy assessment of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae), Metarhizium brunneum (Hypocreales: Clavicipitaceae), and chemical insecticides for Diabrotica virgifera virgifera larval management under real farm conditions. Biol Control 107:1–10. CrossRefGoogle Scholar
  45. Rice ME (2004) Transgenic rootworm corn: assessing potential agronomic, economic and environmental benefits. Plant Health Prog 10:94–104. CrossRefGoogle Scholar
  46. Ritter C, Richter E (2013) Control methods and monitoring of Agriotes wireworms (Coleptera: Elateridae). J Plant Dis Prot 120:4–15CrossRefGoogle Scholar
  47. Strasser H, Rauch H, Schweisgut M, Zelger R (2014) Praxistauglicher Einsatz von biologischen Pflanzenschutzmitteln zur Bekämpfung des Maiswurzelbohrers – eine erste Bilanz basierend auf Feldversuche in der Steiermark (Practical application of biological control agents against the western corn root worm – an initial review based on field experiments in Styria). ALVA Tagungsband, Repa Cop, Wien, pp 178–180Google Scholar
  48. Strasser H, Rauch H, Zelger R (2017) Biological control of adult Diabrotica—spray experiments with Metarhizium brunneum strain BIPESCO 5 under real farm conditions. IOBC wprs Bulletin (forthcoming)Google Scholar
  49. Sufyan M, Neuhoff D, Furlan L (2014) Larval development of Agriotes obscurus under laboratory and semi-natural conditions. Bull Insectol 67:227–235Google Scholar
  50. Swisspatat (2014) Übernahmebedingungen Kartoffelernte 2014. Accessed November 2015
  51. Syngenta (2011) Approved Pamphlet Force 23917 2011-09-27. Accessed June 2014
  52. Toepfer S, Burger R, Ehlers RU, Peters A, Kuhlmann U (2008) Comparative assessment of the efficacy of entomopathogenic nematodes species at reducing western corn rootworm larvae and root damage in maize. J Appl Entomol 132(5):337–349CrossRefGoogle Scholar
  53. Toepfer S, Burger R, Ehlers RU, Peters A, Kuhlmann U (2010) Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy. J Appl Entomol 134:467–480CrossRefGoogle Scholar
  54. Traugott M, Schallhart N, Staudacher K, Wallinger C (2013) Understanding the ecology of wireworms and improving their control: a special issue. J Pest Sci 86:1–2CrossRefGoogle Scholar
  55. Traugott M, Benefer CM, Blackshaw RP, van Herk WG, Vernon RS (2015) Biology, ecology, and control of elaterid beetles in agricultural land. Annu Rev Entomol 60:313–334CrossRefPubMedGoogle Scholar
  56. Tresnik S (2007) State of the art of Integrated Crop Management & organic systems in Europe, with particular reference to pest management: Potato production. Accessed February 2014
  57. Van den Dries K (2013) Good prices for organic potatoes. Accessed September 2014
  58. Van Lenteren C (2011) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57(1):1–20. CrossRefGoogle Scholar
  59. Vernon RS, Herk W, Tolman J (2005) European wireworms (Agriotes spp.) in North America: distribution, damage, monitoring and alternative integrated pest management strategies. IOBC Bull Insect Pathog Insect Parasitic Nematodes Melolontha 28:73–80Google Scholar
  60. Waibel H, Fleischer G (1998). Kosten und Nutzen des chemischen Pflanzenschutzes in der deutschen Landwirtschaft aus gesamtwirtschaftlicher Sicht. Wissenschaftsverlag Vauk, Germany, pp 1–254Google Scholar
  61. Weissling TJ, Meinke LJ, Trimnell D, Golden KL (1989) Behavioral responses of Diabrotica adults to plant-derived semiochemicals encapsulated in a starch borate matrix. Entomol Exp Appl 53:219–228CrossRefGoogle Scholar
  62. Wesseler J, Fall EH (2010) Potential damage costs of Diabrotica virgifera virgifera infestation in Europe—the “no control” scenario. J Appl Entomol 134(5):385–394CrossRefGoogle Scholar
  63. Wesseler J, Scatasta S, Nillesen E (2007) The Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) and other benefits and costs of introducing transgenic maize in the EU-15. Pedobiologia 51:261–269CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Emmanuel O. Benjamin
    • 1
    Email author
  • Giselher Grabenweger
    • 2
  • Hermann Strasser
    • 3
  • Justus Wesseler
    • 4
  1. 1.Technical University of Munich (TUM)FreisingGermany
  2. 2.Forschungsgruppe Ökologie von Schad- und NutzorganismenInstitut für Nachhaltigkeitswissenschaften INHZurichSwitzerland
  3. 3.Faculty of Biology, Institute of MicrobiologyUniversity of InnsbruckInnsbruckAustria
  4. 4.University of WageningenWageningenThe Netherlands

Personalised recommendations