Skip to main content

Advertisement

Log in

The socioeconomic benefits of biological control of western corn rootworm Diabrotica virgifera virgifera and wireworms Agriotes spp. in maize and potatoes for selected European countries

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Innovative biological pest control of the western corn rootworm (WCR) Diabrotica virgifera virgifera and wireworms Agriotes spp. in maize and potato cultivation in Europe is driven by (1) the economic damages caused and (2) the restrictions on chemical pesticides. We analyze the efficacy of biological control agents for WCR and wireworms based on European field trails. A partial equilibrium displacement model is used to estimate the changes in producer and consumer surplus for France, Italy, Spain, Germany, Austria and Romania given different adoption ceiling and adoption speed. Furthermore, the benefit of a potential reduction in pesticide use due to biological control application is evaluated. The results suggest a total annual welfare gain of ca. €190 million from biocontrol of WCR in maize production for the countries under consideration at an adoption ceiling and adoption speed of 30% and 2.41, respectively. In potato production, an annual welfare gain of over €2 million may be recorded in ecological and/or organic cultivation. Overall, the biological control methods provide an economical alternative in maize and can contribute to increase the competitiveness of European Union (EU) agriculture, while they look promising for certified organic potato production at the current level of control efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Author

Fig. 2

Source: Author

Similar content being viewed by others

References

  • Alston JM, Norton GW, Pardey PG (1995) Science under scarcity: principles and practice for agricultural research evaluation and priority setting. Cornell University Press for the International Service for National Agricultural Research (ISNAR), New York

    Google Scholar 

  • Amoabeng BW, Gurr GM, Gitau CW, Stevenson PC (2014) Cost:benefit analysis of botanical insecticide use in cabbage: implications for smallholder farmers in developing countries. Crop Prot 57:17–76

    Article  Google Scholar 

  • Andreyeva T, Long MW, Brownell KD (2010) The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food. Am J Public Health 100(2):216–222. https://doi.org/10.2105/AJPH.2008.151415

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Evans M, Butt TM (2009) Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop Prot 28:269–272

    Article  Google Scholar 

  • Banse M, Grethe H, Nolte S (2005) European simulation model (ESIM) in GAMS: model documentation. Model documentation prepared for DG AGRI, European Commission, Göttingen and Berlin

  • Baufeld P, Enzian S (2005) Maize growing, maize high-risk areas and potential yield losses due to western corn rootworm (Diabrotica virgifera virgifera) damage in selected European countries. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm ecology and management. CABI Publishing, U.K., pp 285–302

    Chapter  Google Scholar 

  • Benjamin EO, Wesseler J (2016) A socioeconomic analysis of biocontrol in integrated pest management: a review of the effects of uncertainty, irreversibility and flexibility. NJAS-Wageningen J Life Sci 77:53–60

    Article  Google Scholar 

  • Brandl MA, Schumann M, French BW, Vidal S (2016) Screening of botanical extracts for repellence against western corn rootworm larvae. J Insect Behav 29:395–414

    Article  Google Scholar 

  • Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2017) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci 90(2):479–493

    Article  Google Scholar 

  • Burniaux J, Delorme F, Lienert I, Martin JP (1990) Walras—A multi-sector, multi-country applied general equilibrium model for quantifying the economy-wide effects of agricultural policies: a technical manual. OECD Economics Department Working Papers, No. 84, OECD Publishing, Paris

  • Canali S, Ciaccia C, Tittarelli F (2012) Soil fertility management in organic potato: the role of green manure and amendment applications. In: He Z, Larkin R, Honeycutt W (eds) Sustainable potato production: global case studies. Springer, Heidelberg, pp 453–469

    Chapter  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366(1573):1987–1998

    Article  Google Scholar 

  • Demont M, Wesseler J, Tollens E (2004) Biodiversity versus transgenic suger beet: the one euro question. Eur Rev Agric Econ 31(1):1–18

    Article  Google Scholar 

  • Dillen K, Mitchell PD, Tollens E (2009) On the competitiveness of Diabrotica virgifera virgifera damage abatement strategies in Hungary: a bio-economic approach. J Appl Entomol 134:395–408

    Article  Google Scholar 

  • ECB (2015) Euro area 10-year Government Benchmark bond yield – Yield. http://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=143.FM.M.U2.EUR.4F.BB.U2_10Y.YLD. Accessed March 2015

  • ECB (2017) European Central Bank—Statistical Data Warehouse—Quick View. http://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=120.EXR.A.CHF.EUR.SP00.A. Accessed May 2016

  • Eckard S, Ansari MA, Bacher S, Butt TM, Enkerli J, Grabenweger G (2014) Virulence of in vivo and in vitro produced conidia of Metarhizium brunneum strains for control of wireworms. Crop Prot 64:137–142

    Article  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology. Biocontrol 46:387–400

    Article  Google Scholar 

  • European commission (2005) Organic farming in the European Union- Facts and Figures. http://www.env-edu.gr/Documents/Organic%20farming%20in%20the%20EU.pdf. Accessed February 2014

  • Eurostat (2002) Handbook for EU agricultural price statistics. http://ec.europa.eu/eurostat/en/web/products-manuals-and-guidelines/-/KS-BH-02-003. Accessed January 2014

  • Eurostat (2009) Organic farming statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Organic_farming_statistics#Total_organic_area. Accessed January 2014

  • Eurostat (2016a) Agriculture Data—Main Table.http://ec.europa.eu/eurostat/web/agriculture/data/main-tables. Accessed October 2016

  • Eurostat (2016b) The EU potato sector—statistics on production, prices and trade. http://ec.europa.eu/eurostat/statistics-explained/index.php/The_EU_potato_sector_-_statistics_on_production,_prices_and_trade. Accessed October 2016

  • Furlan L (1998) The biology of Agriotes ustulatus Schäller (Col., Elateridae). II. Larval development, pupation, whole cycle description and practical implications. J Appl Entomol 122:71–78

    Article  Google Scholar 

  • Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128:696–706

    Article  Google Scholar 

  • Ghadimi SA, Fami HS, Asadi A, Porghasem F (2015) Organic farming of potato in Iran. In: Lichtfouse E (ed) Sustianble agriculture reviews. Springer, New York, pp 273–293

    Chapter  Google Scholar 

  • Hogg D (2004) Cost and benefit of bioprocesses in waste management. In: Lens P, Hamelers B, Hoitink H, Bidlingmaier W (eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, pp 95–119

    Google Scholar 

  • Humbert P, Przyklenk M, Vemmer M, Patel AV (2017a) Calcium gluconate as cross-linker improves survival and shelf life of encapsulated and dried Metarhizium brunneum and Saccharomyces cerevisiae for the application as biological control agents. J Microencapsul 34(1):47–56. https://doi.org/10.1080/02652048.2017.1282550

    Article  PubMed  CAS  Google Scholar 

  • Humbert P, Vemmer M, Giampà M, Bednarz H, Niehaus K, Patel AV (2017b) Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release. World J Microbiol Biotechnol 33(4):71. https://doi.org/10.1007/s11274-017-2237-2

    Article  PubMed  CAS  Google Scholar 

  • Jackson J, Hesler L (1995) Placement and application rate of the nematode Steinernema carpocapsae (Rhabditida:Steinernematidae) for suppression of the western corn rootworm (Coleoptera: Chrysomelidae). J Kansas Entomol Soc 68(4):461–467

    Google Scholar 

  • Jansson T, Heckelei T (2011) Estimating a primal model of regional crop supply in the European Union. J Agric Econ 62(1):137–152

    Article  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185

    Article  Google Scholar 

  • Kiss J, Ewards CR et al (2005) Monitoring of western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992–2003. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm ecology and management. CABI Publishing, U.K., pp 29–40

    Chapter  Google Scholar 

  • Kleespies RG, Ritter C, Zimmermann G, Burghause F, Feiertag S, Leclerque A (2013) A survey of microbial antagonists of Agriotes wireworms from Germany and Italy. J Pest Sci 86:99–106

    Article  Google Scholar 

  • Klug P (2014) Geselliges Treiben Der Maiswurzelbohrer wird heimisch. Der Pflanzenarzt 67(3):12–14

    Google Scholar 

  • Knoema (2017) Certified organic crop production from fully converted areas by crops products. https://knoema.com/food_in_porg2/certified-organic-crop-production-from-fully-converted-areas-by-crops-products?geo=1010710-spain Accessed May 2017

  • Kuhlmann U, van der Burgt WACM (1998) Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News Inform 19:59–68

    Google Scholar 

  • Kwizda (2015) Belem 0,8 MG – gegen Maiswurzelbohrer und Drahtwurm. http://www.kwizda-agro.at/produkte/pflanzenschutz/feldbau/mais/belem-08-mg/ Accessed November 2015

  • Lampman RL, Metcalf RL, Andersen JF (1987) Semiochemicals attractants of Diabrotica undecimpunctata howardi Barber, Southern corn rootworm, and Diabrotica virgifera virgifera leconte, the western corn rootworm (Coleoptera: Chrysomelidae). J Chem Ecol 13(4):959–975

    Article  PubMed  CAS  Google Scholar 

  • Lance DR (1988) Responses of northern and western corn rootworms to semiochemical attractants in corn fields. J Chem Ecol 14(4):1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Parker WE, Howard JJ (2001) The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric For Entomol 3(2):85–98

    Article  Google Scholar 

  • Pilz C, Wegensteiner R, Keller S (2007) Selection of entomopathogenic fungi for the control of the western corn rootworm Diabrotica virgifera virgifera. J Appl Entomol 131:426–431

    Article  Google Scholar 

  • Pretty J, Brett C, Gee D, Hine R et al (2001) Policy challenges and priorities for internalizing the externalities of modern agriculture. J Environ Planning Manage 44(2):263–283

    Article  Google Scholar 

  • Przyklenk M, Vemmer M, Hanitzsch M, Patel AV (2017) A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. J Microencapsul 34(5):498–512. https://doi.org/10.1080/02652048.2017.1354941

    Article  PubMed  CAS  Google Scholar 

  • Rauch H, Steinwender BM et al (2017) Efficacy assessment of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae), Metarhizium brunneum (Hypocreales: Clavicipitaceae), and chemical insecticides for Diabrotica virgifera virgifera larval management under real farm conditions. Biol Control 107:1–10. https://doi.org/10.1016/j.biocontrol.2017.01.007

    Article  CAS  Google Scholar 

  • Rice ME (2004) Transgenic rootworm corn: assessing potential agronomic, economic and environmental benefits. Plant Health Prog 10:94–104. https://doi.org/10.1094/PHP-2004-0301-01-RV

    Article  Google Scholar 

  • Ritter C, Richter E (2013) Control methods and monitoring of Agriotes wireworms (Coleptera: Elateridae). J Plant Dis Prot 120:4–15

    Article  CAS  Google Scholar 

  • Strasser H, Rauch H, Schweisgut M, Zelger R (2014) Praxistauglicher Einsatz von biologischen Pflanzenschutzmitteln zur Bekämpfung des Maiswurzelbohrers – eine erste Bilanz basierend auf Feldversuche in der Steiermark (Practical application of biological control agents against the western corn root worm – an initial review based on field experiments in Styria). ALVA Tagungsband, Repa Cop, Wien, pp 178–180

  • Strasser H, Rauch H, Zelger R (2017) Biological control of adult Diabrotica—spray experiments with Metarhizium brunneum strain BIPESCO 5 under real farm conditions. IOBC wprs Bulletin (forthcoming)

  • Sufyan M, Neuhoff D, Furlan L (2014) Larval development of Agriotes obscurus under laboratory and semi-natural conditions. Bull Insectol 67:227–235

    Google Scholar 

  • Swisspatat (2014) Übernahmebedingungen Kartoffelernte 2014. http://www.kartoffelproduzenten.ch/fileadmin/media/pdf/newsletter/2014/2014-09-01/Uebernehmebedingungen_2014.pdf. Accessed November 2015

  • Syngenta (2011) Approved Pamphlet Force 23917 2011-09-27. http://www.syngentafarm.ca/pdf/labels/FORCE_23917_en_pamphlet.pdf. Accessed June 2014

  • Toepfer S, Burger R, Ehlers RU, Peters A, Kuhlmann U (2008) Comparative assessment of the efficacy of entomopathogenic nematodes species at reducing western corn rootworm larvae and root damage in maize. J Appl Entomol 132(5):337–349

    Article  Google Scholar 

  • Toepfer S, Burger R, Ehlers RU, Peters A, Kuhlmann U (2010) Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy. J Appl Entomol 134:467–480

    Article  Google Scholar 

  • Traugott M, Schallhart N, Staudacher K, Wallinger C (2013) Understanding the ecology of wireworms and improving their control: a special issue. J Pest Sci 86:1–2

    Article  Google Scholar 

  • Traugott M, Benefer CM, Blackshaw RP, van Herk WG, Vernon RS (2015) Biology, ecology, and control of elaterid beetles in agricultural land. Annu Rev Entomol 60:313–334

    Article  PubMed  CAS  Google Scholar 

  • Tresnik S (2007) State of the art of Integrated Crop Management & organic systems in Europe, with particular reference to pest management: Potato production. http://www.pan-europe.info/old/Resources/Reports/Potato_production_review.pdf. Accessed February 2014

  • Van den Dries K (2013) Good prices for organic potatoes. http://www.freshplaza.com/article/115638/Good-prices-for-organic-potatoes. Accessed September 2014

  • Van Lenteren C (2011) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57(1):1–20. https://doi.org/10.1007/s10526-011-9395

    Article  Google Scholar 

  • Vernon RS, Herk W, Tolman J (2005) European wireworms (Agriotes spp.) in North America: distribution, damage, monitoring and alternative integrated pest management strategies. IOBC Bull Insect Pathog Insect Parasitic Nematodes Melolontha 28:73–80

    Google Scholar 

  • Waibel H, Fleischer G (1998). Kosten und Nutzen des chemischen Pflanzenschutzes in der deutschen Landwirtschaft aus gesamtwirtschaftlicher Sicht. Wissenschaftsverlag Vauk, Germany, pp 1–254

  • Weissling TJ, Meinke LJ, Trimnell D, Golden KL (1989) Behavioral responses of Diabrotica adults to plant-derived semiochemicals encapsulated in a starch borate matrix. Entomol Exp Appl 53:219–228

    Article  CAS  Google Scholar 

  • Wesseler J, Fall EH (2010) Potential damage costs of Diabrotica virgifera virgifera infestation in Europe—the “no control” scenario. J Appl Entomol 134(5):385–394

    Article  Google Scholar 

  • Wesseler J, Scatasta S, Nillesen E (2007) The Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) and other benefits and costs of introducing transgenic maize in the EU-15. Pedobiologia 51:261–269

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Stefan Vidal, Dr. Mario Schumann and Dr. Michael Brandl of the Georg-August-Universität Göttingen, Germany.

Funding

This study was funded by the European Commission [Grant Number 282767, 2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel O. Benjamin.

Ethics declarations

Conflict of interest

Emmanuel O. Benjamin declares that he has no conflict of interest. Giselher Grabenweger declares that he has no conflict of interest. Hermann Strasser declares that he has no conflict of interest. Justus Wesseler declares that he has no conflict of interest.

Appendix

Appendix

The changes (\(\Delta\)) in the CS, PS, and total surplus (TS) in the linear partial equilibrium model above can be mathematically denoted (see, for example, Alston et al. 1995) as:

$$\Delta {\text{CS}} = P_{0} Q_{0} Z \left( {1 + 0.5Z} \right),$$
(3)
$$\Delta {\text{PS}} = P_{0} Q_{0} \left( {K - Z} \right) \left( {1 + 0.5Z} \right),$$
(4)
$$\Delta TS = P_{0} Q_{0} K\left( {1 + 0.5Z} \right),$$
(5)

where \(Z = \frac{K\varepsilon }{\varepsilon + }\) and \(K\) is the “proportional vertical shift in the supply curve” due to successful research resulting in cost reduction for adopters of the biocontrol technology. Following Alston et al. (1995), this K-shift due to research can be calculated as:

$$K = \left[ {\frac{E\left( Y \right)}{\varepsilon } - \frac{E\left( C \right)}{1 + E\left( Y \right)}} \right]$$
(6)

where E(Y) is the expected proportionate yield change per hectare given maximum adoption and E(C) is the proportionate change in variable input costs in order to achieve E(Y). The value of the \(K\) shift for maize and potatoes at complete adoption, based on the field trials data collected in Austria and Switzerland, is as follows (please note that we used a supply elasticity, ε, of 0.7 for maize in the K-shift estimation in accordance with Banse et al. (2005):

For maize: \(K = \left[ {\frac{0.26}{0.7} - \frac{0.31}{1 + 0.26}} \right] = 0.12\)

For calculating the \(K\) shift of potatoes, we use a supply elasticity, ε, of 1.5

For potatoes: \(K = \left[ {\frac{0.5}{1.5} - \frac{0.07}{1 + 0.5}} \right] = 0.3\)

The full K-shift is not immediate, but follows a logistic adoption function:

$$\theta (t) = \frac{{\theta_{\hbox{max} } }}{{\left( {1 + e^{ - (a + bt)} } \right)}},$$
(7)

where θ(t) is the adoption rate in year t, a the constant of integration, b the slope coefficient also known as the speed of adoption, and θmax the long-run adoption ceiling.

The social incremental reversible benefits (SIRB) in present value are calculated by building the discounted sum of the annual total surplus using the discounting factor \(\left( {1 + i} \right)^{t}\) over the time, where i is the interest rate and t is the time in years:

$${\text{SIRB}}_{\text{PV}} = \mathop \sum \limits_{t = 0}^{\infty } \left[ {{\text{TS}} \cdot \theta \left( t \right) \cdot \left( {1 + i} \right)^{ - t} } \right].$$
(8)

This can be converted to the average annual SIRBa:

$${\text{SIRB}}_{\text{PV}} = {\text{SIRB}}_{\text{PV}} \cdot i.$$
(9)

Using the data from Table 9, we calibrated a as 1.08 and b as − 0.108. This resulted in the somewhat S-shaped adoption curve for biocontrol of wireworms in potato cultivation across Europe presented in Fig. 2.

Table 9 Expansion in organic cultivate fields in the EU-27 (2002–2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamin, E.O., Grabenweger, G., Strasser, H. et al. The socioeconomic benefits of biological control of western corn rootworm Diabrotica virgifera virgifera and wireworms Agriotes spp. in maize and potatoes for selected European countries. J Plant Dis Prot 125, 273–285 (2018). https://doi.org/10.1007/s41348-018-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-018-0156-6

Keywords

Navigation