Skip to main content
Log in

Tree cover percent investigation with respect to geographical area, vegetation types, agro ecological regions and in agriculture landscape of India: a geospatial approach

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study has utilized the remote sensing and GIS datasets such as tree cover, harmonized land cover, agriculture mask and ancillary source of India for better comprehension of tree cover percent distribution in geographical territory/vegetation classes/agro-ecological zones/agriculture landscapes. The study revealed in the year 2000 the forest area in India was 15.4% of the total geographical area. Furthermore, the total agriculture area in India (including single/double/continuous/rainfed area) for the year 2000 was found 63% of the total geographical area and approximately 10% of the agriculture land retains at least 10% of tree cover which is roughly one-fourth of the total global average. The mean tree cover distribution in various vegetation types was found highest (76.4%) in the category of “Tropical and sub-tropical mountain forests, broadleaved, evergreen > 1000 m”. The vegetation category “Tropical mixed deciduous and dry deciduous forests” occupied high area percent (14.4%) and showed significantly low mean tree cover percent (15.1%). The tree cover percent analysis in various agro-ecological zones of India showed high mean tree cover in those zones where the rainfall is significantly high and soil fertility is adequate such as the categories “North Eastern Hills” (62.5%), “Eastern Himalayas” (60.0%) and “Western Ghats and Coastal Plain” (30.70%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science,309, 570–574.

    Article  Google Scholar 

  2. Balasubramanian, A. (2013). Agro-ecological zones of India. https://www.researchgate.net/publication/314206350_AGRO-ECOLOGICAL_ZONES_OF_INDIA.

  3. DeFries, R., et al. (2000). A new global 1 km data set of percent tree cover derived from remote sensing. Global Change Biology,6, 247–254. https://doi.org/10.1046/j.1365-2486.2000.00296.x.

    Article  Google Scholar 

  4. Schwarz, M., & Zimmermann, N. E. (2005). A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sensing of Environment,95, 428–443.

    Article  Google Scholar 

  5. Joshi, C., Leeuwb, J., Skidmoreb, A. K., van Duren, I., & Oostenb, H. (2006). Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation,8, 84–95.

    Article  Google Scholar 

  6. Kobayashi, T., Tsend-Ayush, J., & Tateishi, R. (2016). A new global tree-cover percentage map using MODIS data. International Journal of Remote Sensing,37(4), 969–992. https://doi.org/10.1080/01431161.2016.1142684.

    Article  Google Scholar 

  7. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science,342(6160), 850–853.

    Article  Google Scholar 

  8. Kobayashi, T., 2014. A new global tree-cover percentage map using MODIS data. Thesis, https://core.ac.uk/download/pdf/97062865.pdf. Accessed on 1 Nov 2018.

  9. Suzanne, E. C., & Melissa, L. M. (2016). Tree cover mapping tool—documentation and user manual (ver. 1.0, March 2016): U.S. Geological Survey Open-File Report 2016–1067, 11 p., http://dx.doi.org/10.3133/ofr20161067.

  10. Jha, C. S., Dutt, C. B. S., & Bawa, K. S. (2000). Deforestation and land use changes in Western Ghats, India. Current Science,79, 231–238.

    Google Scholar 

  11. Jha, C., Goparaju, L., Tripathi, A., et al. (2005). Forest fragmentation and its impact on species diversity: an analysis using remote sensing and GIS. Biodiversity and Conservation,14, 1681. https://doi.org/10.1007/s10531-004-0695-y.

    Article  Google Scholar 

  12. Goparaju, L., Tripathi, A., & Jha, C. S. (2005). Forest fragmentation impacts on phytodiversity-An analysis using remote sensing and GIS. Current Science,88(8), 1264–1274.

    Google Scholar 

  13. Reddy, C. S., Dutta, K., & Jha, C. S. (2013). Analysing the gross and net deforestation rates in India. Current Science,105(11), 1492–1500.

    Google Scholar 

  14. Reddy, C. S., Jha, C. S., Diwakar, P. G., et al. (2015). Nationwide classification of forest types of India using remote sensing and GIS. Environmental Monitoring and Assessment,187, 777. https://doi.org/10.1007/s10661-015-4990-8.

    Article  Google Scholar 

  15. Sahana, M., Ahmed, R., Jain, P., et al. (2016). Driving force for forest fragmentation explored by land use change in Song watershed, India. Spatial Information Research,24, 659. https://doi.org/10.1007/s41324-016-0062-6.

    Article  Google Scholar 

  16. Dutta, S., Sahana, M., & Guchhait, S. K. (2017). Assessing anthropogenic disturbance on forest health based on fragment grading in Durgapur Forest Range, West Bengal, India. Spatial Information Research,25, 501. https://doi.org/10.1007/s41324-017-0117-3.

    Article  Google Scholar 

  17. Ahmad, F., & Goparaju, L. (2017). Assessment of threats to forest ecosystems using geospatial technology in Jharkhand State of India. Current World Environment,12(2), 11. https://doi.org/10.12944/CWE.12.2.19.

    Article  Google Scholar 

  18. Jana, A., Maiti, S., & Biswas, A. (2017). Appraisal of long-term shoreline oscillations from a part of coastal zones of Sundarban delta, Eastern India: a study based on geospatial technology. Spatial Information Research,25, 713. https://doi.org/10.1007/s41324-017-0139-x.

    Article  Google Scholar 

  19. Maity, S., Mondal, I., Das, B., et al. (2017). Pollution tolerance performance index for plant species using geospatial technology: evidence from Kolaghat Thermal Plant area, West Bengal, India. Spatial Information Research,25, 57. https://doi.org/10.1007/s41324-016-0075-1.

    Article  Google Scholar 

  20. Ahmad, F., Uddin, M. M., & Goparaju, L. (2018). Geospatial application for agroforestry suitability mapping based on FAO guideline: case study of Lohardaga, Jharkhand State of India. Spatial Information Research,26, 517. https://doi.org/10.1007/s41324-018-0194-y.

    Article  Google Scholar 

  21. Ahmad, F., & Goparaju, L. (2018). A geospatial analysis of climate variability and its impact on forest fire: a case study in Orissa state of India. Spatial Information Research,26, 587. https://doi.org/10.1007/s41324-018-0197-8.

    Article  Google Scholar 

  22. Roy, P. S., Agrawal, S., Joshi, P. & Shukla, Y. (2003). The land cover map for Southern Asia for the year 2000. GLC2000 database, European Commision Joint Research Centre, 2003. http://forobs.jrc.ec.europa.eu/products/glc2000/products.php.

  23. Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering,14, 508–515.

    Article  Google Scholar 

  24. Ahmad, F., Uddin, M. M., & Goparaju, L. (2018). Agroforestry suitability mapping of India: geospatial approach based on FAO guidelines. Agroforestry Systems. https://doi.org/10.1007/s10457-018-0233-7.

    Article  Google Scholar 

  25. Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., et al. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports,6, 29987. https://doi.org/10.1038/srep29987.

    Article  Google Scholar 

  26. Iiyama, M., Derero, A., Kelemu, K., Muthuri, C., Kinuthia, R., Ayenkulu, E., et al. (2016). Understanding patterns of tree adoption on farms in semiarid and sub-humid Ethiopia. Agroforestry Systems. https://doi.org/10.1007/s10457-016-9926-y.

    Article  Google Scholar 

  27. Venkataraman, K., & Sivaperuman, C. (2018). Biodiversity hotspots in India. In C. Sivaperuman & K. Venkataraman (Eds.), Indian Hotspots. Singapore: Springer. https://doi.org/10.1007/978-981-10-6605-4_1.

    Chapter  Google Scholar 

  28. Ahmad, F., Goparaju, L., & Qayum, A. (2019). Geo-spatial perspective of vegetation health evaluation and climate change scenario in India. Spatial Information Research. https://doi.org/10.1007/s41324-018-00231-3.

    Article  Google Scholar 

  29. Ahmad, F., Uddin, M. M., & Goparaju, L. (2019). Analysis of forest health and socioeconomic dimension in climate change scenario and its future impacts: Remote sensing and GIS approach. Spatial Information Research.,25, 30. https://doi.org/10.1007/s41324-019-00245-5.

    Article  Google Scholar 

  30. Maithani, G. P., Bahuguna, V. K., & Lal, P. (1986). Effect of forest fires on the ground vegetation of a moist deciduous sal (Shorea robusta) forest. Indian Forester,112, 646–678.

    Google Scholar 

  31. Kumar, B. M., Singh, A. K., & Dhyani, S. K. (2012). South Asian agroforestry: Traditions, transformations, and prospects. In P. Nair & D. Garrity (Eds.), Agroforestry—The future of global land use. Advances in agroforestry (Vol. 9). Dordrecht: Springer.

    Google Scholar 

  32. NAP. (2014). National Agroforestry Policy of India. http://www.indiaenvironmentportal.org.in/files/file/Agroforestry%20policy%202014.pdf. Accessed 10 Dec 2018.

  33. Myers, N., Mittermeier, R., Mittermeier, G. C., Dafonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature,403, 853–858.

    Article  Google Scholar 

  34. FAO (2010). Global Forest Resources Assessment 2010 http://www.fao.org/3/a-i1757e.pdf. Accessed on 16 Jan 2019.

Download references

Acknowledgements

The authors are grateful to all websites/literatures from where we have used the data sets/maps for evaluation.

Author information

Authors and Affiliations

Authors

Contributions

FA proposed the idea and analyzed the satellite and ancillary data in GIS domain, LG supervised the analysis and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Firoz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goparaju, L., Ahmad, F. Tree cover percent investigation with respect to geographical area, vegetation types, agro ecological regions and in agriculture landscape of India: a geospatial approach. Spat. Inf. Res. 28, 1–9 (2020). https://doi.org/10.1007/s41324-019-00261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00261-5

Keywords

Navigation