Skip to main content
Log in

Late Weichselian glacial history of Forlandsundet, western Svalbard: an inter-ice-stream setting

  • Original Article
  • Published:
arktos

Abstract

The last glacial maximum (LGM) and post-glacial Quaternary history of Forlandsundet, the strait between western Spitsbergen and Prins Karls Forland, are enigmatic. Previous terrestrial field studies report contradicting evidence for an ice sheet either overriding the entire strait or completely absent during the LGM. Here, we present a multi-proxy investigation of marine sediments, high-resolution bathymetric data and aerial imagery from Forlandsundet. We reveal glacial till present at 15 cal. ka BP and geomorphological landforms characteristic to an inter-ice-stream glaciated margin. This new evidence implies that the Forlandsundet region was fully glaciated during the LGM. This glaciation was followed by a stepwise retreat of glacial ice during the Bølling–Allerød (14.7–12.7 cal. ka BP) and Younger Dryas (12.7–11.7 cal. ka BP). The Holocene record from the marine sediments is incomplete, with a hiatus from approximately 11.8 to 7.4 cal. ka BP, interpreted as an erosive event. By the mid-Holocene (7.4 cal. ka BP), more temperate, Atlantic conditions based on the benthic foraminiferal assemblages prevailed, and are followed by gradual cooling into the late Holocene (< 4 cal. ka BP). This study provides new data to resolve the LGM extent of the Svalbard–Barents Sea ice sheet in the Forlandsundet region and sheds light on the deglacial ice dynamics in a palaeo-inter-ice-stream area driven by the inflow of warm Atlantic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patton H, Andreassen K, Bjarnadóttir LR et al (2015) Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation. Rev Geophys 53:1051–1098. https://doi.org/10.1002/2015RG000495

    Article  Google Scholar 

  2. Ottesen D, Dowdeswell JA, Landvik JY, Mienert J (2007) Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology. Boreas 36:286–306. https://doi.org/10.1111/j.1502-3885.2007.tb01251.x

    Article  Google Scholar 

  3. Ottesen D, Dowdeswell JA (2009) An inter-ice-stream glaciated margin: Submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard. Bull Geol Soc Am 121:1647–1665. https://doi.org/10.1130/B26467.1

    Article  Google Scholar 

  4. Forwick M, Vorren TO (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 280:258–274. https://doi.org/10.1016/j.palaeo.2009.06.026

    Article  Google Scholar 

  5. Ingólfsson Ó, Landvik JY (2013) The Svalbard–Barents Sea ice-sheet – Historical, current and future perspectives. Quat Sci Rev 64:33–60

    Article  Google Scholar 

  6. Landvik JY, Ingólfsson Ó, Mienert J et al (2005) Rethinking Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas 34:7–24. https://doi.org/10.1080/03009480510012809

    Article  Google Scholar 

  7. Landvik JY, Brook EJ, Gualtieri L et al (2013) 10Be exposure age constraints on the Late Weichselian ice-sheet geometry and dynamics in inter-ice-stream areas, western Svalbard. Boreas 42:43–56

    Article  Google Scholar 

  8. Dowdeswell JA, Elverhøi A (2002) The timing of initiation of fast-flowing ice streams during a glacial cycle inferred from glacimarine sedimentation. Mar Geol 188:3–14. https://doi.org/10.1016/S0025-3227(02)00272-4

    Article  Google Scholar 

  9. Farnsworth WR, Ingólfsson Ó, Retelle M, Schomacker A (2016) Over 400 previously undocumented Svalbard surge-type glaciers identified. Geomorphology 264:52–60. https://doi.org/10.1016/J.GEOMORPH.2016.03.025

    Article  Google Scholar 

  10. Norwegian Polar Institute / USGS Landsat (2009) Orthophoto

  11. Norwegian Polar Institute (2014) Terrengmodell Svalbard (S0 Terrengmodell) [Data set]

  12. Gabrielsen RH, Klovjan O (1992) A structural outline of Forlandsundet Graben, Prins Karls Forland, Svalbard. Nor Geol Tidsskr 72:105–120

    Google Scholar 

  13. Mangerud J, Dokken T, Hebbeln D et al (1998) Fluctuations of the Svalbard-Barents Sea Ice Sheet during the last 150 000 years. Quat Sci Rev 17:11–42. https://doi.org/10.1016/S0277-3791(97)00069-3

    Article  Google Scholar 

  14. Andersen ES, Dokken TM, Elverhøi A, Solheim A, Fossen I (1996) Late Quaternary sedimentation and glacial history of the western Svalbard continental margin. Mar Geol 133:123–156. https://doi.org/10.1016/0025-3227(96)00022-9

    Article  Google Scholar 

  15. Landvik JY, Bondevik S, Elverhøi A et al (1998) The last glacial maximum of Svalbard and the Barents sea area: Ice sheet extent and configuration. Quat Sci Rev 17:43–75. https://doi.org/10.1016/S0277-3791(97)00066-8

    Article  Google Scholar 

  16. Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312. https://doi.org/10.1016/J.QUASCIREV.2010.02.020

    Article  Google Scholar 

  17. Rasmussen TL, Thomsen E, Ślubowska M et al (2007) Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quat Res 67:100–114. https://doi.org/10.1016/j.yqres.2006.07.002

    Article  Google Scholar 

  18. Svendsen JI, Elverhøi A, Mangerud J (1996) The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25:244–256. https://doi.org/10.1111/j.1502-3885.1996.tb00640.x

    Article  Google Scholar 

  19. Rüther DC, Mattingsdal R, Andreassen K, Forwick M, Husum K (2011) Seismic architecture and sedimentology of a major grounding zone system deposited by the Bjørnøyrenna Ice Stream during Late Weichselian deglaciation. Quat Sci Rev 30:2776–2792. https://doi.org/10.1016/J.QUASCIREV.2011.06.011

    Article  Google Scholar 

  20. Nielsen T, Rasmussen TL (2018) Reconstruction of ice sheet retreat after the Last Glacial maximum in Storfjorden, southern Svalbard. Mar Geol 402:228–243. https://doi.org/10.1016/J.MARGEO.2017.12.003

    Article  Google Scholar 

  21. Mangerud J, Landvik JY (2007) Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36:278–285. https://doi.org/10.1111/j.1502-3885.2007.tb01250.x

    Article  Google Scholar 

  22. Forman SL (1989) Late Weichselian glaciation and deglaciation of Forlandsundet area, western Spitsbergen. Svalbard Boreas 18:51–60

    Article  Google Scholar 

  23. Król M, Grześ M, Sobota I, Ćmielewski M, Jaworski T (2010) Submarine evidence of the Late Weichselian maximum extent and the Little Ice Age (LIA) glacier limits in the St. Jonsfjorden region (Svalbard). Bull Geogr Phys Geogr Ser 87–102

  24. Andersson T, Forman SL, Ingóflsson Ó, Manley WF (1999) Late Quaternary environmental history of central Prins Karls Forland, western Svalbard. Boreas 28:292–307

    Article  Google Scholar 

  25. Landvik JY, Alexanderson H, Henriksen M, Ingólfsson Ó (2014) Landscape imprints of changing glacial regimes during ice-sheet build-up and decay: a conceptual model from Svalbard. Quat Sci Rev 92:258–268

    Article  Google Scholar 

  26. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Article  Google Scholar 

  27. Farnsworth WR, Ingólfsson Ó, Noormets R et al (2017) Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. Boreas 46:585–603. https://doi.org/10.1111/bor.12269

    Article  Google Scholar 

  28. Evans DJA, Rea BR (2005) Late Weichselian deglaciation and sea level history of St Jonsfjorden, Spitsbergen: A contribution to ice sheet reconstruction. Scott Geogr J 121:175–201

    Article  Google Scholar 

  29. Ślubowska-Woldengen M, Koç N, Rasmussen TL et al (2008) Time-slice reconstructions of ocean circulation changes on the continental shelf in the Nordic and Barents Seas during the last 16,000 cal yr B.P. Quat Sci Rev 27:1476–1492. https://doi.org/10.1016/j.quascirev.2008.04.015

    Article  Google Scholar 

  30. Ślubowska M, Koç N, Rasmussen TL, Klitgaard-Kristensen D (2005) Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20:1–16. https://doi.org/10.1029/2005PA001141

    Google Scholar 

  31. Skirbekk K, Kristensen DK, Rasmussen TL, Koç N, Forwick M (2010) Holocene climate variations at the entrance to a warm Arctic fjord: evidence from Kongsfjorden trough. Svalbard Geol Soc Lond Spec Publ 344:289–304. https://doi.org/10.1144/SP344.20

    Article  Google Scholar 

  32. Hald M, Ebbesen H, Forwick M et al (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088. https://doi.org/10.1016/j.quascirev.2004.08.006

    Article  Google Scholar 

  33. Munsell (2000) Soil Colour Charts. GretagMacbeth, New York

    Google Scholar 

  34. Austin WEN (1991) Late Quaternary Benthonic Foraminiferal Stratigraphy of the Western United Kingdom Continental Shelf. University College of North Wales, Bangor

  35. Darling KF, Schweizer M, Knudsen KL et al (2016) The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol 129:1–23. https://doi.org/10.1016/j.marmicro.2016.09.001

    Article  Google Scholar 

  36. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  37. Mangerud J (1972) Radiocarbon dating of marine shells including a discussion of the apparent age of recent shells from Norway. Boreas 1:143–172. https://doi.org/10.1111/j.1502-3885.1972.tb00147.x

    Article  Google Scholar 

  38. Mangerud J, Gulliksen S (1975) Apparent Radiocarbon Ages of Recent Marine Shells from Norway, Spitsbergen, and Arctic Canada. Quat Res 3:263–273

    Article  Google Scholar 

  39. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  40. Ottesen D, Dowdeswell JA (2006) Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. J Geophys Res. https://doi.org/10.1029/2005JF000330

    Google Scholar 

  41. Streuff K, Cofaigh Ó, Noormets C, Lloyd R JM (2017) Submarine landforms and glacimarine sedimentary processes in Lomfjorden, East Spitsbergen. Mar Geol 390:51–71. https://doi.org/10.1016/J.MARGEO.2017.04.014

    Article  Google Scholar 

  42. Lepvrier C (1992) Early Tertiary palaeostress distribution on Spitsbergen: implications for the tectonic development of the western fold-and-thrust belt. Nor Geol Tidsskr 72:129–135

    Google Scholar 

  43. Flink AE, Noormets R, Kirchner N et al (2015) The evolution of a submarine landform record following recent and multiple surges of Tunabreen glacier, Svalbard. Quat Sci Rev 108:37–50. https://doi.org/10.1016/j.quascirev.2014.11.006

    Article  Google Scholar 

  44. Dowdeswell JA, Fugelli EMG (2012) The seismic architecture and geometry of grounding-zone wedges formed at the marine margins of past ice sheets. Geol Soc Am Bull 124:1750–1761. https://doi.org/10.1130/B30628.1

    Article  Google Scholar 

  45. Batchelor CL, Dowdeswell JA (2015) Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins. Mar Geol 363:65–92. https://doi.org/10.1016/J.MARGEO.2015.02.001

    Article  Google Scholar 

  46. Hald M, Korsun S (1997) Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J Foraminifer Res 27:101–122. https://doi.org/10.2113/gsjfr.27.2.101

    Article  Google Scholar 

  47. Reusche M, Winsor K, Carlson AE et al (2014) 10Be surface exposure ages on the late-Pleistocene and Holocene history of Linnébreen on Svalbard. Quat Sci Rev 89:5–12. https://doi.org/10.1016/J.QUASCIREV.2014.01.017

    Article  Google Scholar 

  48. Altenbach AV, Pflaumann U, Schiebel R et al (1999) Scaling percentages and distributional patterns of benthic Foraminifera with flux rates of organic carbon. J Foraminifer Res 29:173–185

    Google Scholar 

  49. Bunin E (2015) Sedimentary processes and paleoenvironments in St. Jonsfjorden, western Spitsbergen. University of Tromsø, Tromsø

  50. Ó Cofaigh C, Dowdeswell JA (2001) Laminated sediments in glacimarine environments: Diagnostic criteria for their interpretation. Quat Sci Rev 20:1411–1436. https://doi.org/10.1016/S0277-3791(00)00177-3

    Article  Google Scholar 

  51. Powell RD (1984) Glacimarine processes and inductive lithofacies modelling of ice shelf and tidewater glacier sediments based on Quaternary examples. Mar Geol 57:1–52. https://doi.org/10.1016/0025-3227(84)90194-4

    Article  Google Scholar 

  52. Ó Cofaigh C, Dowdeswell JA, Allen CS et al (2005) Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quat Sci Rev 24:709–740. https://doi.org/10.1016/J.QUASCIREV.2004.10.006

    Article  Google Scholar 

  53. Josenhans HW, Zevenhuizen J, Klassen RA (1986) The Quaternary geology of the Labrador Shelf. Can J Earth Sci 23:1190–1213. https://doi.org/10.1139/e86-116

    Article  Google Scholar 

  54. Ślubowska-Woldengen M, Rasmussen TL, Koç N et al (2007) Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quat Sci Rev 26:463–478. https://doi.org/10.1016/j.quascirev.2006.09.009

    Article  Google Scholar 

  55. Bellwald B, Hjelstuen BO, Sejrup HP, Haflidason H (2016) Postglacial mass movements and depositional environments in a high-latitude fjord system – Hardangerfjorden, Western Norway. Mar Geol 379:157–175. https://doi.org/10.1016/j.margeo.2016.06.002

    Article  Google Scholar 

  56. Sejrup HP, Haflidason H, Flatebo T et al (2001) Late-glacial to Holocene environmental changes and climate variability: evidence from Voldafjorden, western Norway. J Quat Sci 16:181–198. https://doi.org/10.1002/jqs.593

    Article  Google Scholar 

  57. Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Mar Pet Geol 22:123–136. https://doi.org/10.1016/j.marpetgeo.2004.10.008

    Article  Google Scholar 

  58. Bondevik S, Svendsen JI, Johnsen G, Mangerud J, Kaland PE (1997) The Storegga tsunami along the Norwegian coast, its age and run up. Boreas 26:29–53. https://doi.org/10.1111/j.1502-3885.1997.tb00649.x

    Article  Google Scholar 

  59. Wagner B, Bennike O, Klug M, Cremer H (2007) First indication of Storegga tsunami deposits from East Greenland. J Quat Sci 22:321–325

    Article  Google Scholar 

  60. Peacock JD, Horne DJ, Whittaker JE (2012) Late Devensian evolution of the marine offshore environment of western Scotland. Proc Geol Assoc 123:419–437. https://doi.org/10.1016/j.pgeola.2012.02.005

    Article  Google Scholar 

  61. Ebbesen H, Hald M, Eplet TH (2007) Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quat Sci Rev 26:1999–2011. https://doi.org/10.1016/j.quascirev.2006.07.020

    Article  Google Scholar 

  62. Rasmussen TL, Forwick M, Mackensen A (2013) Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Mar Micropaleontol 94–95:18–28. https://doi.org/10.1016/j.marmicro.2013.03.011

    Article  Google Scholar 

  63. Kristensen DK, Rasmussen TL, Koç N (2013) Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years—new constraints on the last deglaciation of the Svalbard-Barents Sea Ice Sheet: Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years. Boreas 42:798–813. https://doi.org/10.1111/j.1502-3885.2012.00307.x

    Article  Google Scholar 

  64. Røthe TO, Bakke J, Vasskog K et al (2015) Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quat Sci Rev 109:111–125. https://doi.org/10.1016/J.QUASCIREV.2014.11.017

    Article  Google Scholar 

  65. Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853

    Article  Google Scholar 

  66. Cottier FR, Nilsen F, Skogseth R et al (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geol Soc Lond Spec Publ 344:35–50

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Sara Cohen, Samuel Black, Richard Abell, Colin Abernethy and Leah Morrison for their support in the laboratory at UNIS and SAMS, as well as the participants of the 2013 UNIS summer cruise for their work in retrieving the sediment core. Comments by two anonymous reviewers and Alex Callaway have improved the manuscript. Depth data are reproduced according to the permission No 13/G706 by the Norwegian Hydrographic Service (Dybdedata fra Kartverket sjødivisjon, gjengitt med tillatelses nr. 13/G706). Riccardo Arosio has received funding for this research from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme Glaciated North Atlantic Margins (GLANAM) FP7/2007–2013 under RAE grant agreement no. 317217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Butschek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butschek, F., Arosio, R., Austin, W.E.N. et al. Late Weichselian glacial history of Forlandsundet, western Svalbard: an inter-ice-stream setting. Arktos 5, 1–14 (2019). https://doi.org/10.1007/s41063-018-0063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0063-x

Keywords

Navigation