Skip to main content
Log in

Theoretical Exploration and Electronic Applications of Conductive Two-Dimensional Metal–Organic Frameworks

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) metal–organic frameworks (MOFs) belong to a subgroup of MOFs reminiscent of graphite and covalent organic frameworks (COFs). In the past decade, conductive 2D MOFs have received increasing attention due to their relatively high charge carrier mobility and low resistivity that originate from in-plane charge delocalization and extended π conjugation within the layers. This review comprises the current state-of-the-art of the representative progress in theoretical exploration and electronic applications of conductive 2D MOFs. Special emphasis is placed on the intrinsic relations between the structural factors and the electronic properties of conductive 2D MOFs. This review will provide guidance for researchers to design and synthesize conductive 2D MOFs for advanced applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reprinted with permission from [60]. Copyright 2013 Macmillan Publishers Limited

Fig. 5

Reprinted with permission from [61]. Copyright 2015 Owner Societies

Fig. 6
Fig. 7

Reprinted with permission from [64]. Copyright 2018 American Chemical Society

Fig. 8

Reprinted with permission from [65]. Copyright 2017 The Royal Society of Chemistry

Fig. 9

Reprinted with permission from [44]. Copyright 2012 American Chemical Society

Fig. 10

Reprinted with permission from [69]. Copyright 2017 American Chemical Society

Fig. 11

Reprinted with permission from [62]. Copyright 2014 American Chemical Society

Fig. 12

Reprinted with permission from [68, 70]. Copyright 2016 American Chemical Society and 2017 Macmillan Publishers Limited, part of Springer Nature

Fig. 13

Reprinted with permission from [75, 76]. Copyright 2015 American Chemical Society

Fig. 14

Reprinted with permission from [78]. Copyright 2014 American Chemical Society

Fig. 15

Reprinted with permission from [88]. Copyright 2017 American Chemical Society

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:947

    Google Scholar 

  2. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    CAS  PubMed  Google Scholar 

  3. Hirai K, Reboul J, Morone N et al (2014) Diffusion-coupled molecular assembly: structuring of coordination polymers across multiple length scales. J Am Chem Soc 136:14966–14973

    CAS  PubMed  Google Scholar 

  4. Lu W, Wei Z, Gu ZY et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    CAS  PubMed  Google Scholar 

  5. Zhou HC, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    CAS  PubMed  Google Scholar 

  6. Nandasiri MI, Jambovane SR, McGrail BP et al (2016) Adsorption, separation, and catalytic properties of densified metal–organic frameworks. Coord Chem Rev 31:38–52

    Google Scholar 

  7. Li B, Wen HM, Cui Y et al (2016) Emerging multifunctional metal–organic framework materials. Adv Mater 28:8819–8860

    CAS  PubMed  Google Scholar 

  8. Cui Y, Li B, He H et al (2016) Metal–organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    CAS  PubMed  Google Scholar 

  9. Lei J, Qian R, Ling P et al (2014) Design and sensing applications of metal–organic framework composites. Trend Anal Chem 58:71–78

    CAS  Google Scholar 

  10. Cui L, Wu J, Li J, Ju H (2015) Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal–organic framework. Anal Chem 87:10635

    CAS  PubMed  Google Scholar 

  11. Liang K, Ricco R, Doherty CM et al (2015) Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hintz H, Wuttke S (2014) Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study. Chem Commun 50:11472–11475

    CAS  Google Scholar 

  13. Mehta J, Bhardwaj N, Bhardwaj SK et al (2016) Recent advances in enzyme immobilization techniques: metal–organic frameworks as novel substrates. Coord Chem Rev 322:30–40

    CAS  Google Scholar 

  14. Cai H, Huang YL, Li D (2019) Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord Chem Rev 378:207–221

    CAS  Google Scholar 

  15. Liu X, Qi W, Wang Y et al (2017) A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale 9:17561–17570

    CAS  PubMed  Google Scholar 

  16. Liang K, Richardson JJ, Cui J et al (2016) Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater 28:7910–7914

    CAS  PubMed  Google Scholar 

  17. Suh PM, Park JH, Prasad KT et al (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835

    CAS  PubMed  Google Scholar 

  18. Mason JA, Oktawiec J, Taylor MK et al (2015) Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527:357–361

    CAS  PubMed  Google Scholar 

  19. Peng YL, Pham T, Zaworotko MJ et al (2018) Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene. Angew Chem Int Ed 57:10971–10975

    CAS  Google Scholar 

  20. Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    CAS  PubMed  Google Scholar 

  21. Drout RJ, Robison L, Farha OK (2019) Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev 381:151–160

    CAS  Google Scholar 

  22. Navarro-Sanchez J, Almora-Barrios N, Lerma-Berlanga B et al (2019) Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chem Sci 10:4082–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kreno LE, Leong K, Farha OK et al (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    CAS  PubMed  Google Scholar 

  24. Kempahanumakkagari S, Kumar V, Samaddar P et al (2018) Biomolecule-embedded metal–organic frameworks as an innovative sensing platform. Biotechnol Adv 36:467–481

    CAS  PubMed  Google Scholar 

  25. Qiu Q, Chen H, Wang Y, Ying Y (2019) Recent advances in the rational synthesis and sensing applications of metal–organic framework biocomposites. Coord Chem Rev 387:60–78

    CAS  Google Scholar 

  26. Downes AC, Marinescu CS (2017) Electrocatalytic metal–organic frameworks for energy application. ChemSusChem 10:4374–4392

    CAS  PubMed  Google Scholar 

  27. Ko M, Mendecki L, Mirica KA et al (2018) Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem Commun 54:7873–7891

    CAS  Google Scholar 

  28. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702

    PubMed  Google Scholar 

  29. Li JR, Sculley J, Zhou HC (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932

    CAS  PubMed  Google Scholar 

  30. Liao FS, Lo WS, Hsu WS et al (2017) Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. J Am Chem Soc 139:6530–6533

    CAS  PubMed  Google Scholar 

  31. He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wuttke S, Braig S, Preiss T et al (2015) MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem Commun 51:15752–15755

    CAS  Google Scholar 

  33. Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y et al (2017) Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139:4294–4297

    CAS  PubMed  Google Scholar 

  34. Ren Z, Luo J, Wan Y (2018) Highly permeable biocatalytic membrane prepared by 3D modification: metal–organic frameworks ameliorate its stability for micropollutants removal. Chem Eng J 348:389–398

    CAS  Google Scholar 

  35. Sakamoto R, Hoshiko K, Liu Q (2015) A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun 6:6713

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakamoto R, Yagi T, Hoshiko K (2017) Photofunctionality in porphyrin-hybridized bis(dipyrrinato)zinc(II) complex micro- and nanosheets. Angew Chem Int Ed 56:3526–3530

    CAS  Google Scholar 

  37. Liu YR, Sakamoto R, Ho CL (2019) Electrochromic triphenylamine-based cobalt(II) complex nanosheets. J Mater Chem C 7:9159–9166

    CAS  Google Scholar 

  38. Sun L, Campbell MG, Dinca M (2016) Electrically conductive porous metal–organic frameworks. Angew Chem Int Ed 55:3566–3579

    CAS  Google Scholar 

  39. Cao L, Wang T, Wang C (2018) Synthetic strategies for constructing two-dimensional metal organic layers (MOLs): a tutorial review. Chin J Chem 36:754–764

    CAS  Google Scholar 

  40. Tan C, Cao X, Wu XJ et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    CAS  PubMed  Google Scholar 

  41. Li PZ, Maed Y, Xu Q (2011) Top-down fabrication of crystalline metal–organic framework nanosheets. Chem Commun 47:8436–8438

    CAS  Google Scholar 

  42. Amo Ochoa P, Welte L, González Prieto R et al (2010) Single layers of a multifunctional laminar Cu(I,II) coordination polymer. Chem Commun 46:3262–3264

    CAS  Google Scholar 

  43. Saines PJ, Steinmann M, Tan JC et al (2012) Isomer-directed structural diversity and its effect on the nanosheet exfoliation and magnetic properties of 2,3-dimethylsuccinate hybrid frameworks. Inorg Chem 51:11198–11209

    CAS  PubMed  Google Scholar 

  44. Hmadeh M, Lu Z, Yaghi OM (2012) New porous crystals of extended metal-catecholates. Chem Mater 24:3511–3513

    CAS  Google Scholar 

  45. Wang ZF, Yao MY, Ming WM et al (2013) Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat Commun 4:1384

    CAS  PubMed  Google Scholar 

  46. Zhao B, Zhang JY, Feng WX et al (2014) Quantum spin Hall and Z2 metallic states in an organic material. Phys Rev B Condens Matter Mater Phys 90:201403

    Google Scholar 

  47. Dong L, Kim Y, Er D et al (2017) Two-dimensional π-conjugated covalent-organic frameworks as quantum anomalous hall topological insulators. Phys Rev Lett 116:096601

    Google Scholar 

  48. Wu MH, Wang ZJ, Liu JW et al (2016) Conetronics in 2D metal–organic frameworks: double/half Dirac cones and quantum anomalous Hall effect. 2D Mater 4:015015

    Google Scholar 

  49. Yamada MG, Soejima T, Tsuji N et al (2016) First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal–organic frameworks. Phys Rev B 94:081102

    Google Scholar 

  50. Kane CL, Mele EJ (2005) Quantum spin Hall effect in graphene. Phys Rev Lett 95:226801

    CAS  PubMed  Google Scholar 

  51. Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302

    Google Scholar 

  52. Bernevig BA, Hughes TL, Zhang SC (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–1761

    CAS  PubMed  Google Scholar 

  53. König M, Wiedmann S, Brüne C et al (2007) Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–770

    PubMed  Google Scholar 

  54. Hsieh D, Qian D, Wray L et al (2008) A topological Dirac insulator in a quantum spin Hall phase. Nature 452:970–974

    CAS  PubMed  Google Scholar 

  55. Xia Y, Qian D, Hsieh D et al (2009) Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys 5:398–402

    CAS  Google Scholar 

  56. Zhang HJ, Liu CX, Qi XL et al (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    CAS  Google Scholar 

  57. Chen YL, Analytis JG, Chu JH et al (2009) Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325:178–181

    CAS  PubMed  Google Scholar 

  58. Zhang X, Zhang HJ, Wang J et al (2012) Actinide topological insulator materials with strong interaction. Science 335:1464–1466

    CAS  PubMed  Google Scholar 

  59. Wang ZF, Su NH, Liu F (2013) Prediction of a two-dimensional organic topological insulator. Nano Lett 13:2842–2845

    CAS  PubMed  Google Scholar 

  60. Wang ZF, Liu Z, Liu F (2013) Organic topological insulators in organometallic lattices. Nat Commun 4:1471

    CAS  PubMed  Google Scholar 

  61. Chen S, Dai J, Zeng XC (2015) Metal–organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. Phys Chem Chem Phys 17:5954–5958

    CAS  PubMed  Google Scholar 

  62. Sheberla D, Sun L, Blood-Forsythe AM et al (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J Am Chem Soc 136:8859–8862

    CAS  PubMed  Google Scholar 

  63. Foster EM, Sohlberg K, Spataru DC (2016) Proposed modification of the graphene analogue Ni3(HITP)2 to yield a semiconducting material. J Phys Chem C 120:15001–15008

    CAS  Google Scholar 

  64. Foster EM, Sohlberg K, Allendorf DM et al (2018) Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J Phys Chem Lett 9:481–486

    CAS  PubMed  Google Scholar 

  65. Li W, Sun L, Qi JS et al (2017) High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chem Sci 8:2859–2867

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng MH, Wang QX, Tan YX et al (2010) Rigid pillars and double walls in a porous metal–organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J Am Chem Soc 132:2561–2563

    CAS  PubMed  Google Scholar 

  67. Mendecki L, Mirica AK (2018) Conductive metal–organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl Mater Interfaces 10:19248–19257

    CAS  PubMed  Google Scholar 

  68. Lahiri N, Lotfizadeh N, Tsuchikawa R et al (2017) Hexaaminobenzene as a building block for a family of 2D coordination polymers. J Am Chem Soc 139:19–22

    CAS  PubMed  Google Scholar 

  69. Dou JH, Sun L, Ge TC et al (2017) Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J Am Chem Soc 139:13608–13611

    CAS  PubMed  Google Scholar 

  70. Chen B, Xiang S, Qian G (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43(8):1115–1124

    CAS  PubMed  Google Scholar 

  71. Wu GD, Huang JH, Zan Y et al (2016) Porous field-effect transistors based on a semiconductive metal–organic framework. J Am Chem Soc 139:1360–1363

    PubMed  Google Scholar 

  72. Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    PubMed  Google Scholar 

  73. Sheberla D, Bachman CJ, Elias SJ et al (2017) Conductive MOF electrodes for stable super capacitors with high areal capacitance. Nat Mater 16:220–224

    CAS  PubMed  Google Scholar 

  74. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473

    CAS  Google Scholar 

  75. Campbell GM, Sheberla D, Liu FS et al (2015) Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew Chem Int Ed 54:4349–4352

    CAS  Google Scholar 

  76. Campbell GM, Liu FS, Swager MT et al (2015) Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J Am Chem Soc 137:13780–13783

    CAS  PubMed  Google Scholar 

  77. Kambe T, Sakamoto R, Hoshiko K et al (2013) π-conjugated nickel bis(dithiolene) complex nanosheet. J Am Chem Soc 135:2462–2465

    CAS  PubMed  Google Scholar 

  78. Kambe T, Sakamoto R, Kusamoto T et al (2014) Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J Am Chem Soc 136:14357–14360

    CAS  PubMed  Google Scholar 

  79. Coronado E, Mascaros JR, Garcia CJ (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408:447–449

    CAS  PubMed  Google Scholar 

  80. Givaja G, Amo-Ochoa P, Garcıa CJ (2012) Electrical conductive coordination polymers. Chem Soc Rev 41:115–147

    CAS  PubMed  Google Scholar 

  81. Low KH, Roy VAL, Chui SS (2010) Highly conducting two-dimensional copper(I) 4-hydroxythiophenolate network. Chem Commun 46:7328–7330

    CAS  Google Scholar 

  82. Cui JS, Xu ZT (2014) An electroactive porous network from covalent metal–dithiolene links. Chem Commun 50:3986–3988

    CAS  Google Scholar 

  83. Takaishi S, Hosoda M, Kajiwara T et al (2010) Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg Chem 48:9048–9050

    Google Scholar 

  84. Kobayashi Y, Jacobs B, Allendorf DM et al (2010) Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal–organic framework. Chem Mater 22:4120–4122

    CAS  Google Scholar 

  85. McNamara WR, Han Z, Alperin PJ (2011) A cobalt–dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J Am Chem Soc 133:15368–15371

    CAS  PubMed  Google Scholar 

  86. Han ZJ, Eisenberg R (2014) Fuel from water: the photochemical generation of hydrogen from water. Acc Chem Res 247:2537–2544

    Google Scholar 

  87. Clough JA, Yoo WJ, Mecklenburg HM, Marinescu SC (2015) Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121

    CAS  PubMed  Google Scholar 

  88. Clough JA, Skelton MJ, Downes AC et al (2017) Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J Am Chem Soc 139:10863–10867

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (21601093) and 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal–Organic Framework: From Design to Applications” edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Geng, S., Chen, Y. et al. Theoretical Exploration and Electronic Applications of Conductive Two-Dimensional Metal–Organic Frameworks. Top Curr Chem (Z) 378, 25 (2020). https://doi.org/10.1007/s41061-020-0288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0288-6

Keywords

Navigation