Skip to main content
Log in

Single-Walled Carbon Nanotubes in Solar Cells

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Work functions taken from references [72, 77])

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Avouris P, Freitag M, Perebeinos V (2008) Carbon–nanotube photonics and optoelectronics. Nat Photon 2(6):341–350

    Article  CAS  Google Scholar 

  2. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  3. Lebedkin S, Hennrich F, Kiowski O, Kappes MM (2008) Photophysics of carbon nanotubes in organic polymer–toluene dispersions: emission and excitation satellites and relaxation pathways. Phys Rev B 77(16):165429

    Article  CAS  Google Scholar 

  4. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103(1–3):2555–2558

    Article  CAS  Google Scholar 

  5. Berson S, de Bettignies R, Bailly S, Guillerez S, Jousselme B (2007) Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater 17(16):3363–3370

    Article  CAS  Google Scholar 

  6. Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer–fullerene solar cells. Nano Lett 7(7):1973–1979

    Article  CAS  Google Scholar 

  7. Ma BH, Yip H, Huang F, Jen AK-Y, Ma H, Yip H, Huang F, Jen AK-Y (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388

    Article  CAS  Google Scholar 

  8. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512

    Article  CAS  Google Scholar 

  9. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  CAS  Google Scholar 

  10. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302

    Article  CAS  Google Scholar 

  11. Huynh WU (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  CAS  Google Scholar 

  12. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):073101

    Article  CAS  Google Scholar 

  13. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photon 2(6):341–350

    Article  CAS  Google Scholar 

  14. Fuhrer MS (2000) Crossed nanotube junctions. Science 288(5465):494–497

    Article  CAS  Google Scholar 

  15. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524

    Article  CAS  Google Scholar 

  16. Yuan Y, Karahan HE, Yıldırım C, Wei L, Birer Ö, Zhai S, Laua R, Chen Y (2016) “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale 8:17705–17713

    Article  CAS  Google Scholar 

  17. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718

    Article  CAS  Google Scholar 

  18. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65

    Article  CAS  Google Scholar 

  19. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309

    Article  CAS  Google Scholar 

  20. Fagan JA, Khripin CY, Silvera Batista CA, Simpson JR, Hároz EH, Hight Walker AR, Zheng M (2014) Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv Mater 26(18):2800–2804

    Article  CAS  Google Scholar 

  21. Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon–nanotube–polymer composites. J Appl Phys 93(3):1764

    Article  CAS  Google Scholar 

  22. Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl 13(2):165–172

    Article  CAS  Google Scholar 

  23. Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98(8):084314

    Article  CAS  Google Scholar 

  24. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11(15):1281–1285

    Article  CAS  Google Scholar 

  25. Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80(1):112

    Article  CAS  Google Scholar 

  26. Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88(9):093106

    Article  CAS  Google Scholar 

  27. Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction Photovoltaic cells. J Mater Chem 17(23):2406–2411

    Article  CAS  Google Scholar 

  28. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15(9):1317–1323

    Article  CAS  Google Scholar 

  29. Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradečak S (2011) Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321

    Article  CAS  Google Scholar 

  30. Bindl DJ, Safron NS, Arnold MS (2010) Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 4(10):5657–5664

    Article  CAS  Google Scholar 

  31. Arnold MS, Zimmerman JD, Renshaw CK, Xu X, Lunt RR, Austin CM, Forrest SR (2009) Broad spectral response using carbon nanotube/organic semiconductor/c 60 photodetectors. Nano Lett 9(9):3354–3358

    Article  CAS  Google Scholar 

  32. Bindl DJ, Wu MY, Prehn FC, Arnold MS (2011) Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett 11(2):455–460

    Article  CAS  Google Scholar 

  33. Bindl DJ, Brewer AS, Arnold MS (2011) Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res. 4(11):1174–1179

    Article  CAS  Google Scholar 

  34. Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, McNicholas TP, Gleason KK, Strano MS (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439

    Article  CAS  Google Scholar 

  35. Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13(4):1509–1515

    Article  CAS  Google Scholar 

  36. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11(3):217–222

    Article  CAS  Google Scholar 

  37. Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081

    Article  CAS  Google Scholar 

  38. Kim BH, Kim JY, Jeong SJ, Hwang JO, Lee DH, Shin DO, Choi SY, Kim SO (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4(9):5464–5470

    Article  CAS  Google Scholar 

  39. Shin YJ, Wang Y, Huang H, Kalon G, Wee ATS, Shen Z, Bhatia CS, Yang H (2010) Surface-energy engineering of graphene. Langmuir 26(6):3798–3802

    Article  CAS  Google Scholar 

  40. Tung VC, Huang J-HJ, Kim J, Smith AJ, Chu C-W, Huang J-HJ (2012) Towards solution processed all-carbon solar cells: a perspective. Energy Environ Sci 5(7):7810

    Article  CAS  Google Scholar 

  41. Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang J (2011) Surfactant-free water-processable photoconductive all-carbon composite. J Am Chem Soc 133(13):4940–4947

    Article  CAS  Google Scholar 

  42. Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano 6(10):8896–8903

    Article  CAS  Google Scholar 

  43. Ramuz MP, Vosgueritchian M, Wei P, Wang C, Gao Y, Wu Y, Chen Y, Bao Z (2012) Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 6(11):10384–10395

    Article  CAS  Google Scholar 

  44. Wang H, Koleilat GI, Liu P, Jiménez-Osés G, Lai Y-C, Vosgueritchian M, Fang Y, Park S, Houk KN, Bao Z (2014) High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano 8(3):2609–2617

    Article  CAS  Google Scholar 

  45. Gong M, Shastry TA, Xie Y, Bernardi M, Jasion D, Luck KA, Marks TJ, Grossman JC, Ren S, Hersam MC (2014) Polychiral semiconducting carbon nanotube-fullerene solar cells. Nano Lett 14(9):5308–5314

    Article  CAS  Google Scholar 

  46. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23(5):629–633

    Article  CAS  Google Scholar 

  47. Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv Mater 17(20):2458–2463

    Article  CAS  Google Scholar 

  48. Barazzouk S, Hotchandani S, Vinodgopal K, Kamat PV (2004) Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation. J Phys Chem B 108(44):17015–17018

    Article  CAS  Google Scholar 

  49. Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87(1–4):733–746

    Article  CAS  Google Scholar 

  50. Lee JM, Kwon B-HH, Park H, Kim H, Kim MG, Park JS, Kim ES, Yoo S, Jeon DY, Kim SO (2013) Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv Mater 25(14):2011–2017

    Article  CAS  Google Scholar 

  51. Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park H, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369

    Article  CAS  Google Scholar 

  52. Jeon I, Kutsuzawa D, Hashimoto Y, Yanase T, Nagahama T, Shimada T, Matsuo Y (2015) Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells. Org Electron 17:275–280

    Article  CAS  Google Scholar 

  53. Thompson BC, Fréchet JMJ (2008) Polymer–fullerene composite solar cells. Angew Chemie Int Ed 47(1):58–77

    Article  CAS  Google Scholar 

  54. Nelson J (2011) Polymer:fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470

    Article  CAS  Google Scholar 

  55. Dennler G, Scharber MC, Brabec CJ (2009) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    Article  CAS  Google Scholar 

  56. Zilberberg K, Gasse F, Pagui R, Polywka A, Behrendt A, Trost S, Heiderhoff R, Görrn P, Riedl T (2014) Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv Funct Mater 24(12):1671–1678

    Article  CAS  Google Scholar 

  57. Inganäs O (2011) Organic photovoltaics: avoiding indium. Nat Photon 5(4):201–202

    Article  CAS  Google Scholar 

  58. Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P (2011) Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem Commun 47(7):2032–2034

    Article  CAS  Google Scholar 

  59. Delacou C, Jeon I, Seo S, Nakagawa T, Kauppinen EI, Maruyama S, Matsuo Y (2017) Indium tin oxide-free small molecule organic solar cells using single-walled carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 6(6):M3181–M3184

    Article  CAS  Google Scholar 

  60. Sakaguchi T, Jeon I, Chiba T, Shawky A, Xiang R, Chiashi S, Kauppinen EI, Park N-G, Matsuo Y, Maruyama S (2017) Single-walled carbon nanotube-based metal-free perovskite solar cells with improved stability and efficiency. J Mater Chem A (Submitted)

  61. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube Films. Science 305(5688):1273–1276

    Article  CAS  Google Scholar 

  62. Lee YH, Kim SG, Tománek D (1997) Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys Rev Lett 78(12):2393–2396

    Article  CAS  Google Scholar 

  63. Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppinen EI (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5(4):3214–3221

    Article  CAS  Google Scholar 

  64. van de Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl Phys Lett 88(23):233503

    Article  CAS  Google Scholar 

  65. Ahn N, Jeon I, Yoon J, Kauppinen EI, Yutaka M, Maruyama S, Choi M (2018) Carbon-sandwiched perovskite solar cell. J Mater Chem A. https://doi.org/10.1039/C7TA09174E

    Google Scholar 

  66. Schneider J, Rohner P, Thureja D, Schmid M, Galliker P, Poulikakos D (2016) Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv Funct Mater 26:833–840

    Article  CAS  Google Scholar 

  67. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001

    Article  CAS  Google Scholar 

  68. Cao W, Li J, Chen H, Xue J (2014) Transparent electrodes for organic optoelectronic devices: a review. J Photonics Energy 4:040990

    Article  CAS  Google Scholar 

  69. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  CAS  Google Scholar 

  70. Hou PX, Yu B, Su Y, Shi C, Zhang LL, Liu C, Li SS, Du JH, Cheng HM (2014) Double-wall carbon nanotube transparent conductive films with excellent performance. J Mater Chem A 2:1159–1164

    Article  CAS  Google Scholar 

  71. Hecht DS, Heintz AM, Lee R, Hu L, Moore B, Cucksey C, Risser S (2011) High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22:075201

    Article  CAS  Google Scholar 

  72. Tune DD, Flavel BS, Krupke R, Shapter JG (2012) Carbon nanotube-silicon solar cells. Adv Energy Mater 2(9):1043–1055

    Article  CAS  Google Scholar 

  73. Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13(1):95–99

    Article  CAS  Google Scholar 

  74. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Double-walled carbon nanotube solar cells. Nano Lett 7(8):2317–2321

    Article  CAS  Google Scholar 

  75. Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt Res Appl 4(1):3–33

    Article  CAS  Google Scholar 

  76. Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano Lett 15(3):2104–2110

    Article  CAS  Google Scholar 

  77. Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884

    Article  CAS  Google Scholar 

  78. Anderson WA (1974) An 8% efficient layered Schottky-barrier solar cell. J Appl Phys 45(9):3913

    Article  CAS  Google Scholar 

  79. Tung RT (2001) Recent advances in Schottky barrier concepts. Mater Sci Eng R Rep 35(1–3):1–138

    Article  Google Scholar 

  80. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20(23):4594

    Article  CAS  Google Scholar 

  81. Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2008) SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions. Appl Phys Lett 93(24):243117

    Article  CAS  Google Scholar 

  82. Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009) Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3(6):1407–1414

    Article  CAS  Google Scholar 

  83. Li Z, Jia Y, Wei J, Wang K, Shu Q, Gui X, Zhu H, Cao A, Wu D (2010) Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J Mater Chem 20(34):7236

    Article  CAS  Google Scholar 

  84. Blackburn JL, Barnes TM, Beard MC, Kim Y-H, Tenent RC, McDonald TJ, To B, Coutts TJ, Heben MJ (2008) Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2(6):1266–1274

    Article  CAS  Google Scholar 

  85. Ong P-L, Euler WB, Levitsky IA (2010) Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10):105203

    Article  CAS  Google Scholar 

  86. Wadhwa P, Liu B, McCarthy MA, Wu Z, Rinzler AG (2010) Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett 10(12):5001–5005

    Article  CAS  Google Scholar 

  87. Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11(5):1901–1905

    Article  CAS  Google Scholar 

  88. Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98(13):133115

    Article  CAS  Google Scholar 

  89. Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG (2011) Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett 11(6):2419–2423

    Article  CAS  Google Scholar 

  90. Chen W, Seol G, Rinzler AG, Guo J (2012) Carrier dynamics and design optimization of electrolyte-induced inversion layer carbon nanotube-silicon Schottky junction solar cell. Appl Phys Lett 100(10):103503

    Article  CAS  Google Scholar 

  91. Kozawa D, Hiraoka K, Miyauchi Y, Mouri S, Matsuda K (2012) Analysis of the photovoltaic properties of single-walled carbon nanotube/silicon heterojunction solar cells. Appl Phys Express 5(4):042304

    Article  CAS  Google Scholar 

  92. Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6(3):879–887

    Article  CAS  Google Scholar 

  93. Cui K, Chiba T, Omiya S, Thurakitseree T, Zhao P, Fujii S, Kataura H, Einarsson E, Chiashi S, Maruyama S (2013) Self-Assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. J Phys Chem Lett 4(15):2571–2576

    Article  CAS  Google Scholar 

  94. Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of nanocarbon-silicon solar cells with nanotube–Si or graphene–Si contact. ACS Appl Mater Interfaces 7(31):17088–17094

    Article  CAS  Google Scholar 

  95. Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014) Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A 2(29):11311–11318

    Article  CAS  Google Scholar 

  96. Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS (2010) Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl Phys Lett 96(3):033110

    Article  CAS  Google Scholar 

  97. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305

    Article  CAS  Google Scholar 

  98. Dou L, You J, Yang J, Chen C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 6(3):180–185

    Article  CAS  Google Scholar 

  99. Angmo D, Krebs FC (2013) Flexible ITO-free polymer solar cells. J Appl Polym Sci 129(1):1–14

    Article  CAS  Google Scholar 

  100. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    Article  CAS  Google Scholar 

  101. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Spin-coated small molecules for high performance solar cells. Adv Energy Mater 1(5):771–775

    Article  CAS  Google Scholar 

  102. Li S-S, Chen C-W (2013) Polymer–metal-oxide hybrid solar cells. J Mater Chem A 1(36):10574

    Article  CAS  Google Scholar 

  103. Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506

    Article  CAS  Google Scholar 

  104. De Gomez Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Article  CAS  Google Scholar 

  105. Unalan HE, Hiralal P, Kuo D, Parekh B, Amaratunga G, Chhowalla M (2008) Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J Mater Chem 18(48):5909

    Article  CAS  Google Scholar 

  106. Kymakis E, Klapsis G, Koudoumas E, Stratakis E, Kornilios N, Vidakis N, Franghiadakis Y (2006) Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics. Eur Phys J Appl Phys 36(3):257–259

    Article  CAS  Google Scholar 

  107. Kim S, Yim J, Wang X, Bradley DDC, Lee S, DeMello JC (2010) Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater 20(14):2310–2316

    Article  CAS  Google Scholar 

  108. Tyler TP, Brock RE, Karmel HJ, Marks TJ, Hersam MC (2011) Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices. Adv Energy Mater 1(5):785–791

    Article  CAS  Google Scholar 

  109. Salvatierra RV, Cava CE, Roman LS, Zarbin AJG (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23(12):1490–1499

    Article  CAS  Google Scholar 

  110. Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin AG, Kauppinen EI, Maruyama S, Matsuo Y (2015) Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc 137(25):7982–7985

    Article  CAS  Google Scholar 

  111. Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12(7):3574–3580

    Article  CAS  Google Scholar 

  112. Shin D-W, Lee JH, Kim Y-H, Yu SM, Park S-Y, Yoo J-B (2009) A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 20(47):475703

    Article  CAS  Google Scholar 

  113. Deb SK (1966) Optical properties and color-center formation in thin films of molybdenum trioxide. J Appl Phys 37(13):4818

    Article  CAS  Google Scholar 

  114. Jeon I, Delacou C, Kaskela A, Kauppinen IE, Maruyama S, Matsuo Y (2016) Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes. Sci Rep 6:31348

    Article  CAS  Google Scholar 

  115. Chappel S, Chen S-G, Zaban A (2002) TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 18(8):3336–3342

    Article  CAS  Google Scholar 

  116. Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32(1):28–29

    Article  CAS  Google Scholar 

  117. Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44(1):99–117

    Article  CAS  Google Scholar 

  118. Jang S-R, Vittal R, Kim K-J (2004) Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20(22):9807–9810

    Article  CAS  Google Scholar 

  119. Kongkanand A, Martínez Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. capture and transport of photogenerated electrons. Nano Lett 7(3):676–680

    Article  CAS  Google Scholar 

  120. Lee TY, Alegaonkar PS, Yoo J-B (2007) Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12):5131–5135

    Article  CAS  Google Scholar 

  121. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630

    Article  CAS  Google Scholar 

  122. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photon 8(7):506–514

    Article  CAS  Google Scholar 

  123. McGehee MD (2014) Perovskite solar cells: continuing to soar. Nat Mater 13(9):845–846

    Article  CAS  Google Scholar 

  124. Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, Kauppinen EI, Maruyama S, Matsuo Y (2015) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15(10):6665–6671

    Article  CAS  Google Scholar 

  125. Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH, Mathews N, Mhaisalkar SG (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7):6797–6804

    Article  CAS  Google Scholar 

  126. Wang X, Li Z, Xu W, Kulkarni SA, Batabyal SK, Zhang S, Cao A, Wong LH (2015) TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11:728–735

    Article  CAS  Google Scholar 

  127. Aitola K, Sveinbjörnsson K, Correa-Baena J-P, Kaskela A, Abate A, Tian Y, Johansson EMJ, Grätzel M, Kauppinen EI, Hagfeldt A, Boschloo G (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9(2):461–466

    Article  CAS  Google Scholar 

  128. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568

    Article  CAS  Google Scholar 

  129. Jeon I, Yoon J, Ahn N, Atwa M, Delacou C, Sota M, Kauppinen EI, Choi M, Maruyama S, Matsuo Y (2017) Carbon nanotubes versus graphene as flexible transparent electrodes in perovskite solar cells. J Phys Chem Lett 8:5395–5401

    Article  CAS  Google Scholar 

  130. Jeon I, Seo S, Sato Y, Delacou C, Suenaga K, Kauppinen EI, Maruyama S, Matsuo Y (2017) Perovskite solar cells using carbon nanotubes as both cathode and anode electrodes’. J Phys Chem C 21(46):25743–25749

    Article  CAS  Google Scholar 

  131. Choe M, Lee BH, Jo G, Park J, Park W, Lee S, Hong WK, Seong MJ, Kahng YH, Lee K, Lee T (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron Phys Mater Appl 11(11):1864–1869

    CAS  Google Scholar 

  132. Du J, Pei S, Ma L, Cheng H-M (2014) 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater 26(13):1958–1991

    Article  CAS  Google Scholar 

  133. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11):112001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Maruyama.

Additional information

This article is part of the Topical Collection “Single-Walled Carbon Nanotubes: Preparation, Property and Application”; edited by Yan Li, Shigeo Maruyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, I., Matsuo, Y. & Maruyama, S. Single-Walled Carbon Nanotubes in Solar Cells. Top Curr Chem (Z) 376, 4 (2018). https://doi.org/10.1007/s41061-017-0181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0181-0

Keywords

Navigation