Topics in Current Chemistry

, 374:10 | Cite as

Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience

  • B. Brunetti
  • C. Miliani
  • F. Rosi
  • B. Doherty
  • L. Monico
  • A. Romani
  • A. Sgamellotti
Review
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage

Abstract

The in situ non invasive methods have experienced a significant development in the last decade because they meet specific needs of analytical chemistry in the field of cultural heritage where  artworks are rarely moved from their locations, sampling is rarely permitted, and analytes are a wide range of inorganic, organic and organometallic substances in complex and precious matrices. MOLAB, a unique collection of integrated mobile instruments, has greatly contributed to demonstrate that it is now possible to obtain satisfactory results in the study of a variety of heritage objects without sampling or moving them to a laboratory. The current chapter describes an account of these results with particular attention to ancient, modern, and contemporary paintings. Several non-invasive methods by portable equipment, including XRF, mid- and near-FTIR, UV–Vis and Raman spectroscopy, as well as XRD, are discussed in detail along with their impact on our understanding of painting materials and execution techniques. Examples of successful applications are given, both for point analyses and hyperspectral imaging approaches. Lines for future perspectives are finally drawn.

Keywords

X-ray fluorescence Raman spectroscopy FTIR UV–Vis spectroscopy Pigment Binding media 

Notes

Acknowledgments

The MOLAB activities described in this work were possible thanks to the support of the European Commission, through the Research Infrastructure projects Eu-ARTECH (FP6-RII3-CT-2004-506171) and CHARISMA (FP7-GA n. 228330) and of the Laboratorio di Diagnostica di Spoleto. The authors are grateful to several researchers that contributed to MOLAB activities: C. Anselmi, D. Buti, L. Cartechini, A. Chieli, A. Daveri, F. Gabrieli, C. Grazia, P. Moretti, F. Presciutti, M. Vagnini. Kind permission from J. Wiley and Sons to reproduce Fig. 5 (from Ref. [61]) and rearrange Fig. 9 (from Ref. [129]) is acknowledged. Figures 2, 3 and 4 are reproduced from Ref. [80] and Fig. 8 from Ref. [125] with permission of the Royal Society of Chemistry.

References

  1. 1.
    Brunetti BG, Clark AJ, Sgamellotti A (eds) (2010) Advanced techniques in art conservation. Acc Chem Res 43(6):693-4Google Scholar
  2. 2.
    Sgamellotti A, Brunetti BG, Miliani C (eds) (2014) Science and art. The painted surface. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Clark RJH (1995) Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem Soc Rev 24:187–196CrossRefGoogle Scholar
  4. 4.
    Burgio L, Ciomartan DA, Clark RJH (1997) Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: applications to the study of three German manuscripts. J Mol Struct 405:1–11CrossRefGoogle Scholar
  5. 5.
    MacArthur JD, Del Carmine P, Lucarelli F, Mandò PA (1990) Identification of pigments in some colours on miniatures from the medieval age and early Renaissance. Nucl Instr Meth B 45:315–321CrossRefGoogle Scholar
  6. 6.
    Wagner W, Neelmeijer C (1995) External proton beam analysis of layered objects. Fresenius J Anal Chem 353:297–302CrossRefGoogle Scholar
  7. 7.
    Brissaud I, Guilló A, Lagarde G, Midya P, Calligaro T, Salomon J (1999) Determination of the sequence and thicknesses of multilayers in an easel painting. Nucl Instr Meth B 155:447–452CrossRefGoogle Scholar
  8. 8.
    Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B et al (2000) Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91CrossRefGoogle Scholar
  9. 9.
    Eu-ARTECH, Access, research and technology for the conservation of the European Cultural Heritage, 6th FP RII3-CT-2004-506171 (2004–2009). www.euartech.org
  10. 10.
    CHARISMA, Cultural heritage advanced research infrastructures: synergy for a multidisciplinary approach to conservation, 7th FP GA n. 228330 (2009–2014). www.charismaproject.eu
  11. 11.
    IPERION CH, Integrated platform for the European Research Infrastructure on Cultural Heritage, H2020 RIA n. 654028 (2014–2015). www.iperionch.eu
  12. 12.
    Miliani C, Rosi F, Brunetti BG, Sgamellotti A (2010) In situ non-invasive study of artworks: The MOLAB multi-technique approach. Acc Chem Res 43:728–738CrossRefGoogle Scholar
  13. 13.
    Cesareo R, Frazzoli FV, Mancini C, Sciuti S, Marabelli M, Mora P, Rotondi P, Urbani G (1972) Non-destructive analysis of chemical elements in paintings and enamels. Archaeometry 14:65–78CrossRefGoogle Scholar
  14. 14.
    Hall ET, Schweizer F, Toller PA (1973) X-ray fluorescence analysis of museum objects: a new instrument. Archaeometry 15:53–78CrossRefGoogle Scholar
  15. 15.
    Moioli P, Seccaroni C (2000) Analysis of art objects using a portable X-ray fluorescence spectrometer. X-Ray Spectrom 29:48–52CrossRefGoogle Scholar
  16. 16.
    Brunetti BG, Seccaroni C, Sgamellotti A (eds) (2004) The painting technique of Pietro Vannucci, called il Perugino. Nardini, FirenzeGoogle Scholar
  17. 17.
    Roy A, Spring M (eds) (2007) Raphael’s painting technique: working practice before Rome. Nardini, FirenzeGoogle Scholar
  18. 18.
    Menu M, Ravaud E (eds) (2009) Andrea Mantegna painting technique. Special issue of Techne’. C2RMF, ParisGoogle Scholar
  19. 19.
    de Viguerie L, Solé VA, Walter Ph (2009) Multilayers quantitative X-ray fluorescence analysis applied to easel paintings. Anal Bioanal Chem 395:2015–2020CrossRefGoogle Scholar
  20. 20.
    Bonizzoni L, Galli A, Poldi G, Milazzo M (2007) In situ non-invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers. X-Ray Spectrom 36:55–61CrossRefGoogle Scholar
  21. 21.
    del Viguerie L, Walter Ph, Laval E, Mottin B, Solé VA (2010) Revealing the sfumato technique of Leonardo da Vinci by X-Ray fluorescence spectroscopy. Angew Chem Int Ed 49:6125–6128CrossRefGoogle Scholar
  22. 22.
    Miliani C, Rosi F, Borgia I, Benedetti P, Brunetti BG, Sgamellotti A (2007) Fiber-optic Fourier Transform mid-infrared reflectance spectroscopy: A suitable technique for in situ studies of mural paintings. Appl Spectrosc 61:293–299CrossRefGoogle Scholar
  23. 23.
    Miliani C, Rosi F, Burnstock A, Brunetti BG, Sgamellotti A (2007) Non-invasive in situ investigations versus micro-sampling: a comparative study on a Renoir’s painting. Appl Phys A 89:849–856CrossRefGoogle Scholar
  24. 24.
    Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Piqué F, Brunetti BG, Sgamellotti A (2009) Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach. Anal Bioanal Chem 395:2097–2106CrossRefGoogle Scholar
  25. 25.
    Rosi F, Burnstock A, Van den Berg KJ, Miliani C, Brunetti BG, Sgamellotti A (2009) A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials, Spectrochim. Acta A 71:1655–1662CrossRefGoogle Scholar
  26. 26.
    Kahrim K, Daveri A, Rocchi P, de Cesare G, Cartechini L, Miliani C, Brunetti BG, Sgamellotti A (2009) The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC–MS analysis to monitor and evaluate painting cleaning. Spectrochim Acta A 74:1182–1188CrossRefGoogle Scholar
  27. 27.
    Rosi F, Daveri A, Doherty B, Nazzareni S, Brunetti BG, Sgamellotti A, Miliani C (2010) On the use of overtone and combination bands for the analysis of the CaSO4–H2O system by mid-infrared reflection spectroscopy. Appl Spectrosc 64:956–963CrossRefGoogle Scholar
  28. 28.
    Miliani C, Rosi F, Daveri A, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl Phys A 106:295–307CrossRefGoogle Scholar
  29. 29.
    Buti D, Rosi F, Brunetti BG, Miliani C (2013) In-situ identification of copper-based green pigments. Anal Bioanal Chem 405:2699–2711CrossRefGoogle Scholar
  30. 30.
    Doherty B, Daveri A, Clementi C, Romani A, Bioletti S, Brunetti BG, Sgamellotti A, Miliani C (2013) The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques. Spectrochim Acta A 115:330–336CrossRefGoogle Scholar
  31. 31.
    Daveri A, Doherty B, Moretti P, Grazia C, Romani A, Fiorin E, Brunetti BG, Vagnini M (2015) An uncovered XIII century icon: Particular use of organic pigments and gilding techniques highlighted by analytical methods. Spectrochim Acta A 135:398–404CrossRefGoogle Scholar
  32. 32.
    Buti D, Domenici D, Miliani C, García Sáiz C, Gómez Espinoza T, Jímenez Villalba F, Verde Casanova A, Sabía de la Mata A, Romani A, Presciutti F, Doherty B, Brunetti BG, Sgamellotti A (2014) Non-invasive investigation of a pre-Hispanic Maya screenfold book: The Madrid Codex. J Archaeol Sci 42:166–178CrossRefGoogle Scholar
  33. 33.
    Fabbri M, Picollo M, Porcinai S, Bacci M (2001) Mid-infrared fiber-optics reflectance spectroscopy: A non-invasive technique for remote analysis of painted layers. Part I: Technical setup. Appl Spectrosc 55:420–427CrossRefGoogle Scholar
  34. 34.
    Fabbri M, Picollo M, Porcinai S, Bacci M (2001) Mid-infrared fiber-optics reflectance spectroscopy: A non-invasive technique for remote analysis of painted layers. Part II: Statistical analysis of spectra. Appl Spectrosc 55:428–433CrossRefGoogle Scholar
  35. 35.
    Griffiths P, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  36. 36.
    Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO2 entrapment in natural ultramarine blue. Chem Phys Lett 446:148–151CrossRefGoogle Scholar
  37. 37.
    Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti BG, Sgamellotti A (2009) FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal Bioanal Chem 395:2107–2118CrossRefGoogle Scholar
  38. 38.
    Jurado Lopez A, Luque De Castro MD (2004) Use of near-infrared spectroscopy in a study of binding media in paintings. Anal Bioanal Chem 380:706–771CrossRefGoogle Scholar
  39. 39.
    Wendlandt WW, Hecht HG (1966) Reflectance spectroscopy. Interscience Publishers, New YorkGoogle Scholar
  40. 40.
    Bacci M, Baldini F, Carlá R, Linari R, Picollo M, Radicati B (1993) Colour analysis of the Brancacci Chapel frescoes. Appl Spectrosc 47:399–402CrossRefGoogle Scholar
  41. 41.
    Bacci M, Casini A, Cucci C, Picollo M, Radicati B, Vervat M (2003) Non-invasive spectroscopic measurements on the “Il ritratto della figliastra” by Giovanni Fattori: identification of pigments and colorimetric analysis. J Cult Herit 4:329–336CrossRefGoogle Scholar
  42. 42.
    Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J Am Inst Conserv 46:27–37CrossRefGoogle Scholar
  43. 43.
    Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of non-invasive spectroscopic analyses – FTIR, Raman, visible reflectance spectrometry and EDXRF – to study drawings and illuminated manuscripts. Appl Phys A 92:103–108CrossRefGoogle Scholar
  44. 44.
    Ricciardi P, Delaney J, Facini M, Glinsman L (2013) Use of imaging spectroscopy and in situ analytical methods for the characterization of the materials and techniques of 15th century illuminated manuscripts. J Am Inst Conserv 52:13–29CrossRefGoogle Scholar
  45. 45.
    Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV–visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500CrossRefGoogle Scholar
  46. 46.
    Romani A, Clementi C, Miliani C, Favaro G (2010) Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Acc Chem Res 43:837–846CrossRefGoogle Scholar
  47. 47.
    Clementi C, Doherty B, Gentili P, Miliani C, Romani A, Brunetti BG, Sgamellotti A (2008) Vibrational and electronic properties of painting lakes. Appl Phys A 92:25–33CrossRefGoogle Scholar
  48. 48.
    Clementi C, Miliani C, Romani A, Favaro G (2006) In situ fluorimetry: A powerful noninvasive diagnostic technique for natural dyes used in artefacts Part I. Spectral characterization of orcein in solution, on silk and wool laboratory-standards and a fragment of Renaissance tapestry. Spectrochim Acta, Part A 64:906–912CrossRefGoogle Scholar
  49. 49.
    Miliani C, Romani A, Favaro G (1998) Spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochim Acta, Part A 54:581–588CrossRefGoogle Scholar
  50. 50.
    Buti D (2009) Ph.D. Thesis, University of FirenzeGoogle Scholar
  51. 51.
    Clementi C, Rosi F, Romani A, Vivani R, Brunetti BG, Miliani C (2012) Photoluminescence properties of zinc oxide in paints: A study of the effect of self-absorption and passivation. Appl Spectrosc 66:1233–1241CrossRefGoogle Scholar
  52. 52.
    Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban Ph, Miliani C (2016) UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1−xZnxS solid solutions in cadmium yellow pigments. Microchem J 124:856–867Google Scholar
  53. 53.
    Grazia C, Rosi F, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban Ph, Miliani C (2016) A multitechnique approach for investigating the composition of ternary CdS1−xSex solid solutions employed as artists’ pigments. Microchem J 125:279–289Google Scholar
  54. 54.
    Accorsi G, Verri G, Bolognesi M, Armaroli N, Clementi C, Miliani C, Romani A (2009) The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem Commun 3392–3394Google Scholar
  55. 55.
    Clementi C, Miliani C, Verri G, Sotiropoulou S, Romani A, Brunetti BG, Sgamellotti A (2009) Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers. Appl Spectrosc 63:1323–1330CrossRefGoogle Scholar
  56. 56.
    Simonot L, Thoury M, Delaney JK (2011) Extension of the Kubelka-Munk theory for fluorescent turbid media to a non-opaque layer on a background. J Opt Soc Am 28:1349–1357CrossRefGoogle Scholar
  57. 57.
    Romani A, Clementi C, Miliani C, Brunetti BG, Sgamellotti A, Favaro G (2008) Portable equipment for luminescence lifetime measurements on surfaces. Appl Spectrosc 62:1395–1399CrossRefGoogle Scholar
  58. 58.
    Nevin A, Cesaratto A, Bellei S, D’Andrea C, Toniolo L, Valentini G, Comelli D (2014) Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 14:6338–6355 and references therein CrossRefGoogle Scholar
  59. 59.
    Romani A, Grazia C, Anselmi C, Miliani C, Brunetti BG (2011) New portable instrument for combined reflectance, time-resolved and steady-state luminescence measurements on works of art. In: Pezzati L, Salimbeni R (eds) SPIE Proceedings Vol. 8084: O3A: Optics for Arts, Architecture, and Archaeology III. doi: 10.1117/12.889529
  60. 60.
    Colomban Ph (2012) The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc 43:1529–1535CrossRefGoogle Scholar
  61. 61.
    Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4and PbCr1-xSxO4 solid solutions for the non-invasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045CrossRefGoogle Scholar
  62. 62.
    Nakai I, Abe Y (2012) Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl Phys A 106:279–293CrossRefGoogle Scholar
  63. 63.
    Gatto Rotondo G, Romano FP, Pappalardo G, Pappalardo L, Rizzo F (2010) Nondestructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the LANDIS laboratory of Catania (Italy). Microchem J 96:252–258CrossRefGoogle Scholar
  64. 64.
    Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F (2011) The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru’) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J 99:449–453CrossRefGoogle Scholar
  65. 65.
    Chiari G (2008) Saving art in situ. Nature 453:159CrossRefGoogle Scholar
  66. 66.
    Sarrazin P, Chiari G, Gailhanou M (2008) A portable non-invasive XRF/XRD instrument for the study of art objects. Adv X-Ray Anal 52:175–186Google Scholar
  67. 67.
    Gianoncelli A, Castaing J, Ortega L, Dooryhée E, Salomon J, Walter Ph, Hodeau JL, Bordet P (2008) X-Ray Spectrom 37:418–423CrossRefGoogle Scholar
  68. 68.
    Duran A, Perez-Rodriguez JL, Espejo T, Franquelo ML, Castaing J, Walter Ph (2009) Anal Bioanal Chem 395:1997–2004CrossRefGoogle Scholar
  69. 69.
    Pages-Camagna S, Laval E, Vigears D, Duran A (2010) Non-destructive and in situ analysis of Egyptian wall paintings by X-ray diffraction and X-ray fluorescence portable systems. Appl Phys A 100:671–675CrossRefGoogle Scholar
  70. 70.
    Chiari G (2010) Analyzing stratigraphy with a dual XRD/XRF instrument. Denver X-ray conference abstracts. http://www.dxcicdd.com/10/DXC_list_abstract.asp
  71. 71.
    Uda M, Ishizaki A, Satoh R, Okada K, Nakajima Y, Yamashita D, Ohashi K, Sakuraba Y, Shimono A, Kojima D (2005) Portable X-ray diffractometer equipped with XRF for archaeometry. Nucl Instr Meth B 239:77–84CrossRefGoogle Scholar
  72. 72.
    Mendoza Cuevas A, Perez Gravie H (2011) Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry. Nucl Instrum Methods A 633:72–78CrossRefGoogle Scholar
  73. 73.
    Mendoza Cuevas A, Bernardini F, Gianoncelli A, Tuniz C (2015) Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom 44:105–115CrossRefGoogle Scholar
  74. 74.
    Bracci S, Falletti F, Matteini M, Scopigno R (eds) (2004) Exploring David. Diagnostic tests and state of conservation. Giunti, FirenzeGoogle Scholar
  75. 75.
    Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M et al (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal Chem 85:851–859CrossRefGoogle Scholar
  76. 76.
    Monico L, Janssens K, Hendricks E, Vanmeert F, Van der Schnickt G, Cotte M, Falkemberg G, Brunetti BG, Miliani C (2015) Evidence for degradation of the chrome yellows in Van Gogh Sunflowers: a study by non-invasive methods and synchrotron radiation-based X-ray techniques. Angew Chem Int Ed 54:13923–13927Google Scholar
  77. 77.
    Casadio F, Miliani C, Rosi F, Romani A, Anselmi C, Brunetti BG, Sgamellotti A, Andral JL, Gautier G (2013) Scientific investigations on an important corpus of Picasso paintings in Antibes: New insights into technique, conditions and chronological sequence. J Am Inst Conserv 52:184–204CrossRefGoogle Scholar
  78. 78.
    Rosi F, Miliani C, Clementi C, Kahrim K, Presciutti F, Vagnini M, Manuali V, Daveri A, Cartechini L, Brunetti BG, Sgamellotti A (2010) An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques. Appl Phys A 100:613–624CrossRefGoogle Scholar
  79. 79.
    Van Bommel MR, Janssen H, Spronk R (eds) (2012) Inside out Victory Boogie Woogie. A material history of Mondrian’s masterpiece. Amsterdam University Press, AmsterdamGoogle Scholar
  80. 80.
    Van der Snickt G, Miliani C, Janssens K, Brunetti BG, Romani A, Rosi F, Walter Ph, Castaing J, De Nolf W, Klaassen L, Labarque I, Wittermann R (2011) Material analyses of “Christ with singing and music-making angels”, a late 15th C panel painting attributed to Hans Memling and assistants: Part I. non-invasive in situ investigations. J Anal At Spectrom 26:2216–2229CrossRefGoogle Scholar
  81. 81.
    Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta 61:1221–1226CrossRefGoogle Scholar
  82. 82.
    Gettens RJ, Mrose ME (1954) Calcium Sulphate Minerals in the Grounds of Italian Paintings. Stud Conserv 1:174–189Google Scholar
  83. 83.
    Szmelter I, Cartechini L, Romani A, Pezzati L (2014) Multi-criterial studies of the masterpiece The Last Judgement, attributed to H. Memling, at the National Museum of Gdansk. In: Sgamellotti A, Brunetti BG, Miliani C (eds) Science and art. The painted surface. The Royal Society of Chemistry, CambridgeGoogle Scholar
  84. 84.
    Hradil D, Grygar T, Hradilova J, Bezdicka P, Grunwaldova V, Fogas I, Miliani C (2007) Microanalytical identification of Pb-Sb-Sn yellow pigment in historical European paintings and its differentiation from lead tin and Naples yellows. J Cult Herit 8:377–383CrossRefGoogle Scholar
  85. 85.
    Rosi F, Manuali V, Miliani C, Brunetti BG, Sgamellotti A, Grygar T, Hradil D (2009) Raman scattering features of lead pyroantimonate compounds. Part I: XRD and Raman characterization of Pb2Sb2O7 doped with tin and zinc. J Raman Spectrosc 40:107–111CrossRefGoogle Scholar
  86. 86.
    Rosi F, Manuali V, Grygar T, Bezdicka P, Brunetti BG, Sgamellotti A, Burgio L, Seccaroni C, Miliani C (2011) Raman scattering features of lead pyroantimonate compounds: implication for the non-invasive identification of yellow pigments on ancient ceramics. Part II. In situ characterisation of Renaissance plates by portable micro-Raman and XRF studies. J Raman Spectrosc 42:407–414CrossRefGoogle Scholar
  87. 87.
    Cartechini L, Rosi F, Miliani C, D’Acapito F, Brunetti BG, Sgamellotti A (2011) Modified Naples yellow in Renaissance majolica: study of Pb–Sb–Zn and Pb–Sb–Fe ternary pyroantimonates by X-ray absorption spectroscopy. J Anal At Spectrom 26:2500–2507CrossRefGoogle Scholar
  88. 88.
    Fiedler I, Bayard MA (1986) Cadmium yellow orange and red. In: Feller RL (ed) Artist’s Pigments, a handbook of their history and characteristics, vol 1. Cambridge University Press, Cambridge, pp 65–108Google Scholar
  89. 89.
    Huckle WG, Swigert GF, Wiberley SE (1966) Cadmium Pigments. Structure and Composition. Ind Eng Chem Prod Res Dev 5:362–366CrossRefGoogle Scholar
  90. 90.
    Kirby J, Stonor K, Roy A, Burnstock A, Grout R, White R (2003) Seurat’s Painting Practice: Theory, Development and Technology. Natl Gallery Tech Bull 24:4–37Google Scholar
  91. 91.
    Van der Snickt G, Janssens K, Schalm O, Aibéo C, Kloust H, Alfeld M (2010) James Ensor’s pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry. X-Ray Spectrom 39:103–111CrossRefGoogle Scholar
  92. 92.
    Hendriks E (2006) In: Hendriks E, Van Tilborgh L (eds) New Views on Van Gogh’s development in Antwerp and Paris: an integrated art historical and technical study of his paintings in the Van Gogh Museum. University of Amsterdam, Amsterdam, pp 149–150Google Scholar
  93. 93.
    Kühn H, Curran M (1986) Chrome yellow and other chromate pigments. In: Feller RL (ed) Artists’ pigments: a handbook of their history and characteristics, vol 1. Cambridge University Press, Cambridge, pp 187–200Google Scholar
  94. 94.
    Eastaugh N, Walsh V, Chaplin T, Siddall R (2004) The pigment compendium (CD-ROM). Elsevier, AmsterdamGoogle Scholar
  95. 95.
    Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, Tian H, Tan H, Dik J, Radepont M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal Chem 83:1214–1223 and references therein CrossRefGoogle Scholar
  96. 96.
    Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal Chem 83:1224–1231 and references therein CrossRefGoogle Scholar
  97. 97.
    Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Cestelli Guidi M, Radepont M, Cotte M (2013) Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867CrossRefGoogle Scholar
  98. 98.
    Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Salvant Plisson J, Menu M, Miliani C (2014) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of non-original surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Anal Chem 86:10804–10811CrossRefGoogle Scholar
  99. 99.
    Monico L, Janssens K, Cotte M, Romani A, Sorace L, Grazia C, Brunetti BG, Miliani C (2015) Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of the visible light. J Anal At Spectrosc 30:2024CrossRefGoogle Scholar
  100. 100.
    Herbst W, Hunger K (2004) Industrial organic pigments production, properties, applications. Wiley, New YorkCrossRefGoogle Scholar
  101. 101.
    Van Bommel MR, Vanden Berghe I, Wallert AM, Boitelle R, Wouters J (2007) High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J Chromatogr A 1120:260–272CrossRefGoogle Scholar
  102. 102.
    Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti BG, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 12:292–305CrossRefGoogle Scholar
  103. 103.
    Sherrer NC, Stephan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta A 73:505–524CrossRefGoogle Scholar
  104. 104.
    Vandenabele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517CrossRefGoogle Scholar
  105. 105.
    Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938CrossRefGoogle Scholar
  106. 106.
    Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C (2014) Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc 45:1153–1159CrossRefGoogle Scholar
  107. 107.
    Learner TJ (2004) Analysis of modern paints. Research in conservation. Getty Conservation Institute, Los AngelesGoogle Scholar
  108. 108.
    Cappitelli F, Learner T, Chiantore O (2002) An initial assessment of thermally assisted hydrolysis and methylation—gas chromatography/mass spectrometry for the identification of oils from dried paint films. J Anal Appl Pyrolysis 63:339–348CrossRefGoogle Scholar
  109. 109.
    Silva MF, Doménech-Carbó MT, Fuster-Lopéz L, Martín-Rey S, Mecklenburg MF (2009) Determination of the plasticizercontent in poly(vinyl acetate) paint medium by pyrolysis–silylation–gas chromatography–mass spectrometry. J Anal Appl Pyrolysis 85:487–491CrossRefGoogle Scholar
  110. 110.
    Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Gimeno Adelantado JV (2009) Characterization of commercial synthetic resins by Pyrolysis-Gas Chromatography/Mass Spectrometry: Application to modern art and conservation. Anal Chem 81:3180–3187CrossRefGoogle Scholar
  111. 111.
    Rosi F, Daveri A, Moretti P, Brunetti BG, Miliani C (2016) Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchem J 124:898–908Google Scholar
  112. 112.
    Ploeger R, Chiantore O, Scalarone D, Poli T (2011) Mid-infrared fiber-optic reflection spectroscopy analysis of artists’ alkyd paints on different supports. Appl Spectrosc A 65:429–435CrossRefGoogle Scholar
  113. 113.
    Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430CrossRefGoogle Scholar
  114. 114.
    Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G (2011) Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J Anal At Spectrom 26:899–909CrossRefGoogle Scholar
  115. 115.
    Alfeld M, Pedroso JV, Hommes MV, van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760–776CrossRefGoogle Scholar
  116. 116.
    Janssens K, Dik J, Cotte M, Susini J (2010) Photon-Based Techniques for Nondestructive Subsurface Analysis of Painted Cultural Heritage Artifacts. Acc Chem Res 43:814–825CrossRefGoogle Scholar
  117. 117.
    Legrand S, Vanmeert F, Van der Snickt G, Alfeld M, De Nolf W, Dik J, Janssens K (2014) Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Herit Sci 2:13 and references therein CrossRefGoogle Scholar
  118. 118.
    Alfeld M, van der Snickt G, Vanmeert F, Janssens K, Dik J, Appel K, van der Loeff L, Chavannes M, Meedendorp T, Hendriks E (2013) Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kroller-Muller Museum. Appl Phys A 111:165–175CrossRefGoogle Scholar
  119. 119.
    Bull D, Krekeler A, Alfeld M, Dik J, Janssens K (2011) An intrusive portrait by Goya. Burlingt Mag 153:668–673Google Scholar
  120. 120.
    Alfeld M, De Nolf W, Cagno S, Appel K, Siddons DP, Kuczewski A, Janssens K, Dik J, Trentelman K, Walton M, Sartorius A (2013) Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt’s “An old man in military costume”. J Anal At Spectrom 28:40–43CrossRefGoogle Scholar
  121. 121.
    Trentelman K, Janssens K, van der Snickt G, Szafran Y, Woollett AT, Dik J (2015) Rembrandt’s “An old man in military costume” the underlying image re-examined. Appl Phys A. doi: 10.1007/s00339-015-9426-3 Google Scholar
  122. 122.
    Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, de la Rie ER, Hoenigswald A (2010) Visible and Infrared imaging spectroscopy of Picasso’s Harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc 64:584–594CrossRefGoogle Scholar
  123. 123.
    Thoury M, Delaney JK, de la Rie ER, Palmer M, Morales K, Krueger J (2011) Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings. Appl Spectrosc 65:939–951CrossRefGoogle Scholar
  124. 124.
    Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, Loew M (2012) Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed 51:5607–5610CrossRefGoogle Scholar
  125. 125.
    Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, Loew M, Delaney JK (2013) Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst 138:4838–4848CrossRefGoogle Scholar
  126. 126.
    Muir K, Langley A, Bezur A, Casadio F, Delaney JK, Gautier G (2012) Scientifically investigating Picasso’s suspected use of Ripolin house paints in still life, 1922, and the red armchair, 1931. J Am Inst Conserv 52:156–172CrossRefGoogle Scholar
  127. 127.
    Dooley KA, Conover DM, Deming Glinsman L, Delaney JK (2014) Complementary Standoff Chemical Imaging to Map and Identify Artist Materials in an Early Italian Renaissance Panel Painting. Angew Chem Int Ed 53:13775–13779CrossRefGoogle Scholar
  128. 128.
    Sabbah S, Harig R, Rusch P, Eichmann J, Keens A, Gerhard J (2012) Remote sensing of gases by hyperspectral imaging: system performance and measurements. Opt Eng 51:111717CrossRefGoogle Scholar
  129. 129.
    Rosi F, Miliani C, Braun R, Harig R, Sali D, Brunetti BG, Sgamellotti A (2013) Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew Chem Int Ed 52:5258–5261CrossRefGoogle Scholar
  130. 130.
    Legrand S, Alfeld M, Vanmeert F, De Nolf W, Janssens K (2014) Macroscopic reflection Fourier Transformed Mid-Infrared (MA-rFTIR) scanning, a new technique for in situ imaging of painted cultural artefacts. Analyst 139:2489–2498CrossRefGoogle Scholar
  131. 131.
    Doryhee F, Anne M, Bardies I, Hodeau JL, Martinetto P, Rondot S, Salomon J, Waughan GBM, Walter Ph (2005) Non-destructive synchrotron X-ray diffraction mapping of a Roman painting. Appl Phys A 81:663–667CrossRefGoogle Scholar
  132. 132.
    De Nolf W, Dik J, Van der Snickt G, Wallert A, Janssens K (2011) High energy X-ray powder diffraction for the imaging of (hidden) paintings. J Anal At Spectrom 26:910–916CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • B. Brunetti
    • 1
    • 2
  • C. Miliani
    • 1
    • 2
  • F. Rosi
    • 2
  • B. Doherty
    • 2
  • L. Monico
    • 2
  • A. Romani
    • 1
    • 2
  • A. Sgamellotti
    • 1
    • 2
  1. 1.Centro di Eccellenza SMAArt (Scientific Methodologies Applied to Archaeology and Art)Università degli Studi di PerugiaPerugiaItaly
  2. 2.Istituto CNR di Scienze e Tecnologie Molecolari (CNR-ISTM)PerugiaItaly

Personalised recommendations