Skip to main content
Log in

Plastic Buckling and Postbuckling Analysis of Plates Using 3D Incompatible and Standard Elements

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the current study, plastic buckling and postbuckling behavior of aluminum alloy plates under uniaxial, biaxial and combined compressive/shear loadings using 3D standard and incompatible elements are investigated. In this study, the finite element code considering geometrically and material nonlinearities is developed based on the incremental theory of plasticity. Obtained results show that the bifurcation point and postbuckling behavior in the models with linear standard elements have significant differences in models with incompatible and quadratic elements at the same mesh size. Furthermore, the buckling and postbuckling analysis using incompatible elements have faster convergence rate compared to linear and quadratic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akrami V, Erfani S (2015) Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS). Steel Compos Struct 18(3):641–657

    Article  Google Scholar 

  • Alinia MM, Habashi HR, Khorram A (2009) Nonlinearity in the postbuckling behaviour of thin steel shear panels. J Thin Walled Struct 47(4):412–420

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Bathe K, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  Google Scholar 

  • Bathe KJ, Kojic M (2005) Inelastic analysis of solids and structures. Springer, New York

    Google Scholar 

  • Bazeley GP, Cheung YK, Irons BM (1965) Triangular elements in plate bending conforming and nonconforming solutions. In: Proceedings of the conference on matrix methods in structural mechanics. Wright Patterson Air Force Base, Ohio, pp 547–576

  • Cerioni R, Brighenti R, Donida G (1995) Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Comput Struct 57(1):47–57

    Article  Google Scholar 

  • Chen SJ, Jhang C (2006) Cyclic behavior of low yield point steel shear walls. J Thin Walled Struct 44(7):730–738

    Article  Google Scholar 

  • Chen XW, Yuan HX, Du XX, Zhao Y, Ye J, Yang L (2018) Shear buckling behaviour of welded stainless steel plate girders with transverse stiffeners. J Thin Walled Struct 99:9–27

    Google Scholar 

  • Choi CK, Kim SH (1928) Coupled use of reduced integration and non-conforming modes in quadratic Mindlin plate element. Int J Numer Method Eng 28(8):1909–1928

    Article  Google Scholar 

  • Durban D, Zuckerman Z (1999) Elastoplastic buckling of rectangular plates in biaxial compression/tension. Int J Mech Sci 41(7):751–765

    Article  Google Scholar 

  • El-Sawy KM, Nazmy AS, Martini MI (2004) Elasto-plastic buckling of perforated plates under uniaxial compression. J Thin Walled Struct 42(8):1083–1101

    Article  Google Scholar 

  • Fang C, Yam Michael CH, Zhou X, Zhang Y (2015) Post-buckling resistance of gusset plate connections: behaviour, strength, and design considerations. J Eng Struct 99:9–27

    Article  Google Scholar 

  • Hassani B, Tavakkoli SM (2005) Derivation of incompatible modes in nonconforming finite elements using hierarchical shape functions. Asian J Civ Eng (Build and Housing) 6(3):153–165

    MATH  Google Scholar 

  • Ju SB, Sin HC (1996) New incompatible four-noded axisymmetric elements with assumed strains. Comput Struct 60(2):269–278

    Article  MathSciNet  Google Scholar 

  • Kadkhodayan M, Maarefdoust M (2014) Elastic/plastic buckling of isotropic thin plates subjected to uniform and linearly varying in-plane loading using incremental and deformation theories. Aerosp Sci Technol 32(1):66–83

    Article  Google Scholar 

  • Komur MA (2011) Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression. Mech Res Commun 38(2):117–122

    Article  Google Scholar 

  • Komur MA, Sonmez M (2008) Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout. Mech Res Commun 35(6):361–371

    Article  Google Scholar 

  • Komur MA, Sonmez M (2015) Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading. J Constr Steel Res 112:54–60

    Article  Google Scholar 

  • Li DH, Zhang F, Xu JX (2016) Incompatible extended layerwise method for laminated composite shells. Int J Mech Sci 119:243–252

    Article  Google Scholar 

  • Loughlan J, Hussain N (2016) The post-buckled failure of steel plate shear webs with centrally located circular cut-outs. J Struct 8(2):252–263

    Article  Google Scholar 

  • Rahmzadeh A, Ghassemieh M, Park Y, Abolmaali A (2015) Effect of stiffeners on steel plate shear wall systems. Steel Compos Struct 20(3):545–569

    Article  Google Scholar 

  • Rao GV, Venkataramana J, Raju KK (1975) Stability of moderately thick rectangular plates using a high precision triangular finite element. Comput Struct 5(4):257–259

    Article  Google Scholar 

  • Scheperboer IC, Efthymiou E, Maljaars J (2016) Local buckling of aluminium and steel plates with multiple holes. J Thin Walled Struct 99:132–141

    Article  Google Scholar 

  • Serror Mohammed H, Ghareeb Ahmed, Mourad Hamed, Mourad Sherif A (2016) Numerical study on buckling of steel web plates with openings. Steel Compos Struct 22(6):1417–1443

    Article  Google Scholar 

  • Shrivastava SC (1979) Inelastic buckling of plates including shear effects. Int J Solids Struct 15:567–575

    Article  MathSciNet  Google Scholar 

  • Souza De, Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester

    Google Scholar 

  • Sussman T, Bathe KJ (2014) Spurious modes in geometrically nonlinear small displacement finite elements with incompatible mode. Comput Struct 140:14–22

    Article  Google Scholar 

  • Taiebat HH, Carter JP (2001) Three-dimensional non-conforming elements. Cent Geotech Res Univ Sydney Sydney Aust Rep (R808)

  • Tan HKV, Bettess P, Bettess JA (1983) Elastic buckling of isotropic triangular flat plates by finite elements. Appl Math Model 7(5):311–316

    Article  Google Scholar 

  • Taylor RL, Beresford PJ, Wilson EL (1976) A nonconforming element for stress analysis. Int J Numer Methods Eng 10(6):1211–1219

    Article  Google Scholar 

  • Timoshenko S, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York

    Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  • Wang C, Aung TM (2007) Plastic buckling analysis of thick plates using P-ritz method. Int J Solids Struct 44(18):6239–6255

    Article  Google Scholar 

  • Wilson EL, Ibrahimbegovic A (1990) Use of incompatible displacement modes for the calculation of element stiffnesses or stresses. Finite Elem Anal Des 7(3):229–241

    Article  Google Scholar 

  • Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. Academic press Inc, London

    Book  Google Scholar 

  • Zhang W, Wang X (2011) Elastoplastic buckling analysis of thick rectangular plates by using the differential quadrature method. Comput Math Appl 61(1):44–61

    Article  MathSciNet  Google Scholar 

  • Zirakian T, Zhang J (2015) Buckling and yielding behavior of unstiffened slender, moderate, and stocky low yield point steel plates. J Thin Walled Struct 88:105–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Kharazi.

Appendix

Appendix

Matrices used in 3D standard element based on Total Lagrangian formulation:

According to Eq. (7a), linear strain–displacement matrix can be written as follows (Bathe 1996):

$${}_{0}^{t} B^{\text{L}} = {}_{0}^{t} B^{{\text{L0}}} + {}_{0}^{t} B^{{\text{L1}}}$$
(32)
$${}_{0}^{t} B^{{\text{L0}}} = \left[ {\begin{array}{*{20}l} {{}_{0}H_{k,1} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {{}_{0}H_{k,2} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {{}_{0}H_{k,3} } \hfill \\ {{}_{0}H_{k,2} } \hfill & {{}_{0}H_{k,1} } \hfill & 0 \hfill \\ 0 \hfill & {{}_{0}H_{k,3} } \hfill & {{}_{0}H_{k,2} } \hfill \\ {{}_{0}H_{k,3} } \hfill & 0 \hfill & {{}_{0}H_{k,1} } \hfill \\ \end{array} } \right]\quad k = 1,2, \ldots ,8$$
(33)
$${}_{0}^{t} B^{{\text{L1}}} = \left[ {\begin{array}{*{20}l} {l_{11} {}_{0}H_{k,1} } \hfill & {l_{21} {}_{0}H_{k,1} } \hfill & {l_{31} {}_{0}H_{k,1} } \hfill \\ {l_{12} {}_{0}H_{k,2} } \hfill & {l_{22} {}_{0}H_{k,2} } \hfill & {l_{32} {}_{0}H_{k,2} } \hfill \\ {l_{13} {}_{0}H_{k,3} } \hfill & {l_{23} {}_{0}H_{k,3} } \hfill & {l_{33} {}_{0}H_{k,3} } \hfill \\ {(l_{11} {}_{0}H_{k,2} + l_{12} {}_{0}H_{k,1} )} \hfill & {(l_{21} {}_{0}H_{k,2} + l_{22} {}_{0}H_{k,1} )} \hfill & {(l_{31} {}_{0}H_{k,2} + l_{32} {}_{0}H_{k,1} )} \hfill \\ {(l_{12} {}_{0}H_{k,3} + l_{13} {}_{0}H_{k,2} )} \hfill & {(l_{22} {}_{0}H_{k,3} + l_{23} {}_{0}H_{k,2} )} \hfill & {(l_{32} {}_{0}H_{k,3} + l_{33} {}_{0}H_{k,2} )} \hfill \\ {(l_{11} {}_{0}H_{k,3} + l_{13} {}_{0}H_{k,1} )} \hfill & {(l_{21} {}_{0}H_{k,3} + l_{23} {}_{0}H_{k,1} )} \hfill & {(l_{31} {}_{0}H_{k,3} + l_{33} {}_{0}H_{k,1} )} \hfill \\ \end{array} } \right]\quad k = 1,2, \ldots ,8$$
(34)
$$l_{ij} = \sum\limits_{k = 1}^{8} {{}_{0}H_{k,j} } {}^{t}u_{i}^{k} \quad i,j = 1,2,3$$
(35)

in addition, according to Eq. (7b) nonlinear strain–displacement matrix can be written as follows:

$${}_{0}^{t} B^{{\,\text{NL}}} = \left[ {\begin{array}{*{20}l} {{}_{0}^{t} \tilde{B}^{{\,\text{NL}}} } \hfill & {\tilde{0}} \hfill & {\tilde{0}} \hfill \\ {\tilde{0}} \hfill & {{}_{0}^{t} \tilde{B}^{{\,\text{NL}}} } \hfill & {\tilde{0}} \hfill \\ {\tilde{0}} \hfill & {\tilde{0}} \hfill & {{}_{0}^{t} \tilde{B}^{{\,\text{NL}}} } \hfill \\ \end{array} } \right]$$
(36)
$${}_{0}^{t} \tilde{B}^{{\,\text{NL}}} = \left[ {\begin{array}{*{20}l} {{}_{0}H_{k,1} } \hfill & 0 \hfill & 0 \hfill \\ {{}_{0}H_{k,1} } \hfill & 0 \hfill & 0 \hfill \\ {{}_{0}H_{k,1} } \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]\quad k = 1,2, \ldots ,8$$
(37)
$$\tilde{0}\, = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right]$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, H.M., Kharazi, M. Plastic Buckling and Postbuckling Analysis of Plates Using 3D Incompatible and Standard Elements. Iran J Sci Technol Trans Mech Eng 44, 881–903 (2020). https://doi.org/10.1007/s40997-019-00316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00316-w

Keywords

Navigation