Energy, Ecology and Environment

, Volume 3, Issue 2, pp 72–80 | Cite as

Nanotoxicology assessment in complementary/alternative models

  • Daiana Silva Ávila
  • Juliana Fredo Roncato
  • Maurício Tavares Jacques
Original Research Article


Despite all the applications of nanotechnology, limited data are available on their environmental and health risks. Many nanomaterials have been developed; however, their safety evaluation is not performed at the same speed. Toxicity can occur at different trophic levels (microorganisms, invertebrates, and vertebrates), and because of that, alternative/complementary models have been successfully employed. This mini-review aims to report some studies that have successfully used different alternative models to assess nanotoxicology and to stimulate their use by other groups of this important field. This will provide more information about nanomaterials and also to evoke studies to improve formulations.


Nanotoxicology Caenorhabditis elegans Drosophila melanogaster Danio rerio Aretmia salina Daphnia magna 



Authors would like to thank the funding agencies (CNPq, CAPES, and FAPERGS) for their support. Avila DS is recipient of PQ2 research fellowship.

Compliance with ethical standards

Conflict of interest

Authors declare that no conflict of interest is involved in the production of this manuscript.


  1. Agunbiade FO, Moodley B (2014) Pharmaceuticals as emerging organic contaminants in Umgeni River water system KwaZulu-Natal, South Africa. Environ Monit Assess 186:7273–7291. CrossRefGoogle Scholar
  2. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269. CrossRefGoogle Scholar
  3. Araj Salah-Eddin A, Salem NM, Ghabeish IH, Awwad AM (2015) Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater. Google Scholar
  4. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis PloS one 8:e53186. Google Scholar
  5. Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci Process Impacts 2013:
  6. Ates M, Demir V, Arslan Z, Daniels J, Farah IO, Bogatu C (2015) Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation toxicity and depuration in Artemia salina larvae. Environ Toxicol 30:109–118. CrossRefGoogle Scholar
  7. Avanesian A, Semnani S, Jafari M (2009) Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discov Today 14:761–766. CrossRefGoogle Scholar
  8. Avila D, Helmcke K, Aschner M (2012) The Caenorhabiditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol 31:236–243. CrossRefGoogle Scholar
  9. Barros SM et al (2016) A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys 596:22–42. CrossRefGoogle Scholar
  10. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395. CrossRefGoogle Scholar
  11. Bianchini MC et al (2016) Peumus boldus (Boldo) aqueous extract present better protective effect than boldine against manganese-induced toxicity in D. melanogaster. Neurochem Res 41:2699–2707. CrossRefGoogle Scholar
  12. Borm PJ et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC Particle and fibre toxicology 3:11. Google Scholar
  13. Boverhof DR, David RM (2010) Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396:953–961. CrossRefGoogle Scholar
  14. Chakraborty C, Sharma AR, Sharma G, Lee S-S (2016) Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14:65. CrossRefGoogle Scholar
  15. Charao MF et al (2015) Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomed 10:5093–5106. CrossRefGoogle Scholar
  16. Chen T-H, Lin C-Y, Tseng M-C (2011) Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63:303–308. CrossRefGoogle Scholar
  17. Chen H, Roco MC, Son J, Jiang S, Larson CA, Gao Q (2013) Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. Journal of Nanoparticle Research 15:1951. CrossRefGoogle Scholar
  18. Chen H, Wang B, Feng W, Du W, Ouyang H, Chai Z, Bi X (2015) Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology 9:302–312. CrossRefGoogle Scholar
  19. Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36. CrossRefGoogle Scholar
  20. Chi-Hsin H, Zhi-Hong W, Chan-Shing L, Chiranjib C (2007) The Zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovascular Res 4:111–120. CrossRefGoogle Scholar
  21. Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF (2014) Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 147:129–139. CrossRefGoogle Scholar
  22. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem Frontiers. Chemistry. Google Scholar
  23. Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL (2014) Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem 33:2716–2723. CrossRefGoogle Scholar
  24. Cozzens S, Cortes R, Soumonni O, Woodson T (2013) Nanotechnology and the millennium development goals: water, energy, and agri-food. J Nanopart Res 15:2001. CrossRefGoogle Scholar
  25. Curtis J, Greenberg M, Kester J, Phillips S, Krieger G (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25:245–260CrossRefGoogle Scholar
  26. Das S, Debnath N, Patra P, Datta A, Goswami A (2012) Nanoparticles influence on expression of cell cycle related genes in Drosophila: a microarray-based toxicogenomics study. Toxicol Environ Chem 94:952–957CrossRefGoogle Scholar
  27. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137. CrossRefGoogle Scholar
  28. Fan W, Cui M, Liu H, Wang C, Shi Z, Tan C, Yang X (2011) Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut 159:729–734. CrossRefGoogle Scholar
  29. Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, Egea MA, Garcia ML, Souto SB, Souto EB (2013) A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 18:545–549. CrossRefGoogle Scholar
  30. Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95. CrossRefGoogle Scholar
  31. Galdiero E et al (2017) Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomed 12:2717–2731. CrossRefGoogle Scholar
  32. Gambardella C et al (2014) Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environ Monit Assess 186:4249–4259. CrossRefGoogle Scholar
  33. Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomed 6:343–350. Google Scholar
  34. Guarnieri DJ, Heberlein U (2003) Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 54:199–228CrossRefGoogle Scholar
  35. Hadrup N, Sharma AK, Poulsen M, Nielsen E (2015) Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—A review. Regul Toxicol Pharmacol RTP 72:216–221. CrossRefGoogle Scholar
  36. Jacques MT, Oliveira JL, Campos EV, Fraceto LF, Avila DS (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253. CrossRefGoogle Scholar
  37. Jang S, Jang H, Lee Y, Suh D, Baik S, Hong BH, Ahn JH (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21:425201. CrossRefGoogle Scholar
  38. Johnston H et al (2013) Engineered nanomaterial risk lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43:1–20. CrossRefGoogle Scholar
  39. Jorgensen EM (2005) Gaba WormBook : the online review of C elegans biology:1-13
  40. Juch H, Nikitina L, Debbage P, Dohr G, Gauster M (2013) Nanomaterial interference with early human placenta: Sophisticated matter meets sophisticated tissues. Reprod Toxicol 41:73–79. CrossRefGoogle Scholar
  41. Jung SK et al (2015) Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol 49:2477–2485. CrossRefGoogle Scholar
  42. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem. Google Scholar
  43. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217CrossRefGoogle Scholar
  44. Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43. CrossRefGoogle Scholar
  45. Lin S, Zhao Y, Nel AE, Lin S (2013) Zebrafish: an in vivo model for nano EHS studies. Small (Weinheim an der Bergstrasse, Germany) 9:1608–1618. CrossRefGoogle Scholar
  46. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363CrossRefGoogle Scholar
  47. Liu B, Campo EM, Bossing T (2014) Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PLoS ONE 9:e88681. CrossRefGoogle Scholar
  48. Mackay TF, Anholt RR (2006) Of flies and man: Drosophila as a model for human complex traits. Annu Rev Genomics Hum Genet 7:339–367. CrossRefGoogle Scholar
  49. Madani SY, Mandel A, Seifalian AM (2013) A concise review of carbon nanotube’s toxicology. Nano Rev. Google Scholar
  50. Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM (2012) Long-term Lethal Toxicity Test with the Crustacean Artemia franciscana. J Vis Exp JoVE:3790 . Google Scholar
  51. Miao W, Zhu B, Xiao X, Li Y, Dirbaba NB, Zhou B, Wu H (2015) Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat Toxicol 161:117–126. CrossRefGoogle Scholar
  52. Misra JR, Horner MA, Lam G, Thummel CS (2011) Transcriptional regulation of xenobiotic detoxification in Drosophila Genes & development 25:1796–1806. Google Scholar
  53. Mora M, Bonilla E, Medina-Leendertz S, Bravo Y, Arcaya JL (2014) Minocycline increases the activity of superoxide dismutase and reduces the concentration of nitric oxide, hydrogen peroxide and mitochondrial malondialdehyde in manganese treated Drosophila melanogaster. Neurochem Res 39:1270–1278. CrossRefGoogle Scholar
  54. Moraes BS, Vieira SM, Salgueiro WG, Michels LR, Colome LM, Avila DS, Haas SE (2016) Clozapine-loaded polysorbate-coated polymeric nanocapsules: physico-chemical characterization and toxicity evaluation in Caenorhabditis elegans model. J Nanosci Nanotechnol 16:1257–1264CrossRefGoogle Scholar
  55. Moreno-González R, Campillo JA, García V, León VM (2013) Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 92:247–257. CrossRefGoogle Scholar
  56. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. CrossRefGoogle Scholar
  57. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. CrossRefGoogle Scholar
  58. Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462. CrossRefGoogle Scholar
  59. Oberdorster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. CrossRefGoogle Scholar
  60. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1:2–25. CrossRefGoogle Scholar
  61. Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20:772–781Google Scholar
  62. Ong C, Yung LY, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396–403. CrossRefGoogle Scholar
  63. Ozkan Y, Altinok I, Ilhan H, Sokmen M (2016) Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: toxicity morphological changes, uptake and depuration. Bull Environ Contam Toxicol 96:36–42. CrossRefGoogle Scholar
  64. Pal A, He Y, Jekel M, Reinhard M (2014) Gin KY-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle Environment International 71:46–62. Google Scholar
  65. Panahifar A, Mahmoudi M, Doschak MR (2013) Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity. ACS Appl Mater Interfaces 5:5219–5226. CrossRefGoogle Scholar
  66. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436. CrossRefGoogle Scholar
  67. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE (2009) Normal table of post-embryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn Off Publ Am Assoc Anat 238:2975–3015. Google Scholar
  68. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. CrossRefGoogle Scholar
  69. Posgai R, Ahamed M, Hussain SM, Rowe JJ, Nielsen MG (2009) Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ 408:439–443. CrossRefGoogle Scholar
  70. Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42. CrossRefGoogle Scholar
  71. Powell MC, Kanarek MS (2006) Nanomaterial health effects–part 1: background and current knowledge. WMJ Off Publ State Med SocWis 05:16–20Google Scholar
  72. Rand MD, Montgomery SL, Prince L, Vorojeikina D (2014) Developmental toxicity assays using the Drosophila model. Curr Protocols Toxicol 59(1):12. Google Scholar
  73. Rui Q, Zhao Y, Wu Q, Tang M, Wang D (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93:2289–2296. CrossRefGoogle Scholar
  74. Samaee S-M, Rabbani S, Jovanović B, Mohajeri-Tehrani MR, Haghpanah V (2015) Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf 116:121–128. CrossRefGoogle Scholar
  75. Savolainen K et al (2013) Nanosafety in Europe 2015–2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations. EDITA, HelsinkiGoogle Scholar
  76. Schindler DW (1987) Detecting Ecosystem Responses to Anthropogenic Stress. Can J Fish Aquat Sci 44:s6–s25. CrossRefGoogle Scholar
  77. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15:394–404. CrossRefGoogle Scholar
  78. Schuler RL, Hardin BD, Niemeier RW (1982) Drosophila as a tool for the rapid assessment of chemicals for teratogenicity. Teratog Carcinog Mutagen 2:293–301CrossRefGoogle Scholar
  79. Scown TM, van Aerle R, Tyler CR (2010) Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670. CrossRefGoogle Scholar
  80. Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV (2014) Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. Aquat Toxicol 156:269–273. CrossRefGoogle Scholar
  81. Strähle U et al (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132. CrossRefGoogle Scholar
  82. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. CrossRefGoogle Scholar
  83. Tan C, Wang W-X (2014) Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut 186:36–42. CrossRefGoogle Scholar
  84. Tejeda-Benitez L, Olivero-Verbel J (2016) Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol 237:1–35. Google Scholar
  85. Thomaidi VS, Stasinakis AS, Borova VL, Thomaidis NS (2015) Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. J Hazard Mater 283:740–747. CrossRefGoogle Scholar
  86. Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL (2012) Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol 155:269–274. Google Scholar
  87. Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J, Avramescu ML (2014) Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int 21:11823–11831. CrossRefGoogle Scholar
  88. Vanhaecke P, Persoone G, Claus C, Sorgeloos P (1981) Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol Environ Saf 5:382–387. CrossRefGoogle Scholar
  89. Vecchio G (2015) A fruit fly in the nanoworld: once again Drosophila contributes to environment and human health. Nanotoxicology 9:135–137. CrossRefGoogle Scholar
  90. Vega-Alvarez S, Herrera A, Rinaldi C, Carrero-Martinez FA (2014) Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. Int J Nanomed 9:2031–2041. Google Scholar
  91. Wang J et al (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83:461–467. CrossRefGoogle Scholar
  92. Wu Q et al (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131. CrossRefGoogle Scholar
  93. Xia G, Liu T, Wang Z, Hou Y, Dong L, Zhu J, Qi J (2016) The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol 44:1116–1121. Google Scholar
  94. Yang L et al (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol 8:R227–R227. CrossRefGoogle Scholar
  95. Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Processes Impacts 15:39–48. CrossRefGoogle Scholar
  96. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43:278–284. CrossRefGoogle Scholar

Copyright information

© Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daiana Silva Ávila
    • 1
  • Juliana Fredo Roncato
    • 1
  • Maurício Tavares Jacques
    • 1
  1. 1.Programa de Pós-Graduação em BioquímicaUniversidade Federal do Pampa – UNIPAMPAUruguaianaBrazil

Personalised recommendations