Skip to main content
Log in

Generalized holomorphic Cartan geometries

  • Research/Review Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

This is largely a survey paper, dealing with Cartan geometries in the complex analytic category. We first remind some standard facts going back to the seminal works of Felix Klein, Élie Cartan and Charles Ehresmann. Then we present the concept of a branched holomorphic Cartan geometry which was introduced by Biswas and Dumitrescu (Int Math Res Not IMRN, 2017. https://doi.org/10.1093/imrn/rny003, arxiv:1706.04407). It generalizes to higher dimension the notion of a branched (flat) complex projective structure on a Riemann surface introduced by Mandelbaum. This new framework is much more flexible than that of the usual holomorphic Cartan geometries (e.g. all compact complex projective manifolds admit branched holomorphic projective structures). At the same time, this new definition is rigid enough to enable us to classify branched holomorphic Cartan geometries on compact simply connected Calabi–Yau manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Michor, P.W.: Differential geometry of Cartan connections. Publ. Math. Debrecen 47(3–4), 349–375 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85(1), 181–207 (1957)

    Article  MathSciNet  Google Scholar 

  3. Biswas, I.: Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree. Proc. Amer. Math. Soc. 126(10), 2827–2834 (1998)

    Article  MathSciNet  Google Scholar 

  4. Biswas, I., Dumitrescu, S.: Branched holomorphic Cartan geometries and Calabi–Yau manifolds. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rny003, arxiv:1706.04407

  5. Biswas, I., McKay, B.: Holomorphic Cartan geometries, Calabi–Yau manifolds and rational curves. Differ. Geom. Appl. 28(1), 102–106 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bogomolov, F., De Oliveira, B.: Local structure of closed symmetric 2-differentials. In: Cascini, P. et al. (eds.) Foliation Theory in Algebraic Geometry. Simons Symposia, pp. 53–71. Springer, Cham (2016)

  7. Bogomolov, F., De Oliveira, B.: Symmetric differentials of rank 1 and holomorphic maps. Pure Appl. Math. Q. 7(4), 1085–1104 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bogomolov, F., De Oliveira, B.: Closed symmetric 2-differentials of the 1st kind. Pure Appl. Math. Q. 9(4), 613–642 (2013)

    Article  MathSciNet  Google Scholar 

  9. Brunella, M.: On holomorphic forms on compact complex threefolds. Comment. Math. Helv. 74(4), 642–656 (1999)

    Article  MathSciNet  Google Scholar 

  10. Corlette, K.: Flat \(G\)-bundles with canonical metrics. J. Differential Geom. 28(3), 361–382 (1988)

    Article  MathSciNet  Google Scholar 

  11. de Saint-Gervais, H.P.: Uniformization of Riemann Surfaces. European Mathematical Society (EMS), Zürich (2016)

    Book  Google Scholar 

  12. Dumitrescu, S.: Homogénéité locale pour les métriques riemanniennes holomorphes en dimension \(3\). Ann. Inst. Fourier (Grenoble) 57, 739–773 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dumitrescu, S., Zeghib, A.: Global rigidity of holomorphic Riemannian metrics on compact complex \(3\)-manifolds. Math. Ann. 345(1), 53–81 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ehresmann, C.: Sur les espaces localement homogènes. Enseign. Math. 35, 317–333 (1936)

    MATH  Google Scholar 

  15. Ghys, É.: Déformations des structures complexes sur les espaces homogènes de \({\rm SL}(2, {\mathbb{C}})\). J. Reine Angew. Math. 468, 113–138 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994)

    Book  Google Scholar 

  17. Gunning, R.C.: On Uniformization of Complex Manifolds. Mathematical Notes, vol. 22. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  18. Hochschild, G.P.: Basic Theory of Algebraic Groups and Lie Algebras. Graduate Texts in Mathematics, vol. 75. Springer, New York (1981)

    Book  Google Scholar 

  19. Inoue, M., Kobayashi, S., Ochiai, T.: Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2), 247–264 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton Legacy Library. Princeton University Press, Princeton (1987)

    Book  Google Scholar 

  21. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. Math. Ann. 249(1), 75–94 (1980)

    Article  MathSciNet  Google Scholar 

  22. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. II. Math. Ann. 255(4), 519–521 (1981)

    Article  MathSciNet  Google Scholar 

  23. Mandelbaum, R.: Branched structures on Riemann surfaces. Trans. Amer. Math. Soc. 163, 261–275 (1972)

    Article  MathSciNet  Google Scholar 

  24. Mandelbaum, R.: Branched structures and affine and projective bundles on Riemann surfaces. Trans. Amer. Math. Soc. 183, 37–58 (1973)

    Article  MathSciNet  Google Scholar 

  25. Moishezon, B.: On \(n\)-dimensional compact varieties with \(n\) independent meromorphic functions. Amer. Math. Soc. Transl. 63, 51–77 (1967)

    Article  Google Scholar 

  26. Molzon, R., Mortensen, K.P.: The Schwarzian derivative for maps between manifolds with complex projective connections. Trans. Amer. Math. Soc. 348(8), 3015–3036 (1996)

    Article  MathSciNet  Google Scholar 

  27. Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. Cambridge Tracts in Mathematics, vol. 165. Cambridge Universiy Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Sharpe, R.W.: Differential Geometry. Graduate Text Mathematics, vol. 166. Springer, New York (1997)

    MATH  Google Scholar 

  29. Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867–918 (1988)

    Article  MathSciNet  Google Scholar 

  30. Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  Google Scholar 

  31. Wang, H.-C.: Complex parallisable manifolds. Proc. Amer. Math. Soc. 5(5), 771–776 (1954)

    Article  MathSciNet  Google Scholar 

  32. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dumitrescu.

Additional information

Dedicated to the memory of Stefan Papadima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IB is partially supported by a J.C. Bose Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Dumitrescu, S. Generalized holomorphic Cartan geometries. European Journal of Mathematics 6, 661–680 (2020). https://doi.org/10.1007/s40879-019-00327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-019-00327-6

Keywords

Mathematics Subject Classification

Navigation