Skip to main content
Log in

Scheme-theoretic Whitney conditions

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate a scheme-theoretic variant of Whitney condition (a). If X is a projective variety over the field of complex numbers and \(Y \subset X\) a subvariety, then X satisfies generically the scheme-theoretic Whitney condition (a) along Y provided that the projective dual of X is smooth. We give applications to tangency of projective varieties over \({\mathbb {C}}\) and to convex real algebraic geometry. In particular, we prove a Bertini-type theorem for osculating planes of smooth complex space curves and a generalization of a theorem of Ranestad and Sturmfels describing the algebraic boundary of an affine compact real variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abuaf, R.: Theorems of tangencies in projective and convex geometry (2011). arXiv:1103.0877

  2. Abuaf, R.: Singularities of the projective dual variety. Pacific J. Math. 253(1), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  3. Anderson, R.D., Klee Jr., V.L.: Convex functions and upper semi-continuous collections. Duke Math. J. 19, 349–357 (1952)

    Article  MathSciNet  Google Scholar 

  4. Blekherman, G., Hauenstein, J., Ottem, J.Chr., Ranestad, K., Sturmfels, B.: Algebraic boundaries of Hilbert’s SOS cones. Compositio Math. 148(6), 1717–1735 (2012)

  5. Bolognesi, M., Pirola, G.: Osculating spaces and diophantine equations. Math. Nachr. 284(8–9), 960–972 (2011)

    Article  MathSciNet  Google Scholar 

  6. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory and Applications. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  7. Griffiths, P., Haris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994)

    Book  Google Scholar 

  8. Helton, J.W., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kaji, H.: On the tangentially degenerate curves. J. London Math. Soc. 33(3), 430–440 (1986)

    Article  MathSciNet  Google Scholar 

  10. Nuño Ballesteros, J.J., Romero Fuster, M.C.: Global bitangency properties of generic closed space curves. Math. Proc. Cambridge Philos. Soc. 112(3), 519–526 (1992)

    Article  MathSciNet  Google Scholar 

  11. Ottem, J.Chr., Ranestad, K., Sturmfels, B., Vinzant, C.: Quartic spectrahedra. Math. Program. Ser. B 151(2), 585–612 (2015)

  12. Piene, R.: A note on higher order dual varieties, with an application to scrolls. In: Orlik, P. (ed.) Singularities, Part 2, Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 335–342. American Mathematical Society, Providence (1983)

  13. Ranestad, K., Sturmfels, B.: The convex hull of a variety. In: Brändén, P., Passare, M., Putinar, M. (eds.) Notions of Positivity and the Geometry of Polynomials. Trends in Mathematics, pp. 331–344. Birkhäuser, Basel (2011)

    Chapter  Google Scholar 

  14. Ranestad, K., Sturmfels, B.: On the convex hull of a space curve. Adv. Geom. 12(1), 157–178 (2012)

    Article  MathSciNet  Google Scholar 

  15. Scheiderer, C.: Spectrahedral shadows. SIAM J. Appl. Algebr. Geom. 2(1), 26–44 (2018)

    Article  MathSciNet  Google Scholar 

  16. Sinn, R.: Algebraic boundaries of convex semi-algebraic sets. Res. Math. Sci. 2(1), #3 (2015)

    Article  MathSciNet  Google Scholar 

  17. Teissier, B.: Variétés polaires II: multiplicités polaires, sections planes et conditions de Whitney. In: Aroca, J.M. (ed.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 961, pp. 314–491. Springer, Berlin (1982)

    Chapter  Google Scholar 

  18. Wall, C.T.C.: Projection genericity of space curves. J. Topology 1(2), 362–390 (2008)

    Article  MathSciNet  Google Scholar 

  19. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81(3), 496–549 (1965)

    Article  MathSciNet  Google Scholar 

  20. Zak, F.L.: Tangents and Secants of Algebraic Varieties Translations of Mathematical Monographs, vol. 127. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

  21. Zak, F.L.: Determinant of projective varieties and their degrees. In: Popov, V.L. (ed.) Algebraic Transformation Groups and Algebraic Varieties. Encyclopaedia of Mathematical Sciences, vol. 132, pp. 207–238. Springer, Berlin (2004)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Christian Peskine and Fyodor Zak for the numerous and fruitful discussions they have had on Conjecture 1.2. It was their insight that the the linear span of the union of the tangent spaces to the tangency scheme should replace the linear span of the tangency scheme in the statement of Conjecture 1.2. The author also indebted to Claire Voisin for sharing with him her counter-example to Conjecture 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Abuaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuaf, R. Scheme-theoretic Whitney conditions. European Journal of Mathematics 6, 249–261 (2020). https://doi.org/10.1007/s40879-018-00308-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-00308-1

Keywords

Mathematics Subject Classification

Navigation