Journal of Medical and Biological Engineering

, Volume 37, Issue 6, pp 887–898 | Cite as

Preclinical Biokinetic Modelling of Tc-99m Radiophamaceuticals Obtained from Semi-Automatic Image Processing

  • Luz G. Cornejo-Aragón
  • Clara L. Santos-Cuevas
  • Blanca E. Ocampo-García
  • Isaac Chairez-Oria
  • Lorenza Diaz-Nieto
  • Janice García-Quiroz
Original Article


The aim of this study was to develop a semi automatic image processing algorithm (AIPA) based on the simultaneous information provided by X-ray and radioisotopic images to determine the biokinetic models of Tc-99m radiopharmaceuticals from quantification of image radiation activity in murine models. These radioisotopic images were obtained by a CCD (charge couple device) camera coupled to an ultrathin phosphorous screen in a preclinical multimodal imaging system (Xtreme, Bruker). The AIPA consisted of different image processing methods for background, scattering and attenuation correction on the activity quantification. A set of parametric identification algorithms was used to obtain the biokinetic models that characterize the interaction between different tissues and the radiopharmaceuticals considered in the study. The set of biokinetic models corresponded to the Tc-99m biodistribution observed in different ex vivo studies. This fact confirmed the contribution of the semi-automatic image processing technique developed in this study.


Biokinetic modelling Medical and biological imaging Radioisotopic image processing Tc-99m radiopharmaceuticals 



Authors want to acknowledge the support given by the projects IPN-SIP-COFAA-2015-0344, CONACyT-CB-2013-221867 and CONACyT-PDCPN-2015-01-1040 granted by the National Polytechnic Institute and the National Council of Science and Technology, respectively. This research was carried out as part of the activities of the “Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, CONACyT”.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Kiessling, F., Pichler, J., & Hauff, P. (2011). Small animal imaging. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Gross, S., & Piwnica-Worms, D. (2006). Molecular imaging strategies for drug discovery and development. Current Opinion in Chemical Biology, 10, 334–342.CrossRefGoogle Scholar
  3. 3.
    Fox, J. G., Barthold, S., Davisson, M., Newcomer, C. E., Quimby, F. W., & Smith, A. (2006). The mouse in biomedical research: Diseases (Vol. 2). New York: Academic Press.Google Scholar
  4. 4.
    Judenhofer, M. S., Wehrl, H. F., Newport, D. F., Catana, C., Siegel, S. B., Becker, M., et al. (2008). Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nature Medicine, 14, 459–465.CrossRefGoogle Scholar
  5. 5.
    Cho, H., Ackerstaff, E., Carlin, S., Lupu, M. E., Wang, Y., Rizwan, A., et al. (2009). Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia, 11(3), 247IN2–259IN3.CrossRefGoogle Scholar
  6. 6.
    Cherry, S. R. (2009). Multimodality imaging: Beyond pet/ct and spect/ct. Seminars in Nuclear Medicine, 39(5), 348–353.CrossRefGoogle Scholar
  7. 7.
    Doney, E., Van Avermaete, T., Chapman, S., Waldeck, J., & Leevy, W. M. (2013). Planar imaging of 99mTc labeled SPECT probes in living mice using the in-vivo Xtreme platform with radioisotopic phosphor screen. Application Note.Google Scholar
  8. 8.
    Ortiz-Arzate, Z., Santos-Cuevas, C. L., Ocampo-García, B. E., Ferro-Flores, G., García-Becerra, R., Estrada, G., et al. (2014). Kit preparation and biokinetics in women of 99mTc-EDDA/HYNIC-E-[c (RGDfK)] 2 for breast cancer imaging. Nuclear Medicine Communications, 35, 423–432.CrossRefGoogle Scholar
  9. 9.
    Ferro-Flores, G., de Murphy, C. A., Rodrguez-Cortes, J., Pedraza-Lopez, M., & Ramrez-Iglesias, M. T. (2006). Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nuclear Medicine Communications, 27, 371–376.CrossRefGoogle Scholar
  10. 10.
    Santos-Cuevas, C. L., Ferro-Flores, G., de Murphy, C. A., & Pichardo-Romero, P. A. (2008). Targeted imaging of gastrin-releasing peptide receptors with 99mTc-EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry in women. Nuclear Medicine Communications, 29, 741–747.CrossRefGoogle Scholar
  11. 11.
    Barbolosi, D., Hapdey, S., Battini, S., Faivre, C., Mancini, J., Pacak, K., et al. (2015). Determination of the unmetabolised 18F-FDG fraction by using an extension of simplified kinetic analysis method: clinical evaluation in paragangliomas. Medical & Biological Engineering & Computing, 54(1), 103–111.CrossRefGoogle Scholar
  12. 12.
    Vicini, P., Brill, A. B., Stabin, M. G., & Rescigno, A. (2008). Kinetic modeling in support of radionuclide dose assessment. Seminars in Nuclear Medicine, 38(5), 335–346.CrossRefGoogle Scholar
  13. 13.
    Pinard, E., Engrand, N., & Seylaz, J. (2000). Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: Involvement of type I nitric oxide synthase. Journal of Cerebral Blood Flow & Metabolism, 20, 1648–1658.CrossRefGoogle Scholar
  14. 14.
    Junk, M., Salzwedel, J., Sindlinger, T., Brkle, A., & Moreno-Villanueva, M. (2014). Mathematical modelling of the automated FADU assay for the quantification of DNA strand breaks and their repair in human peripheral mononuclear blood cells. BMC Biophysics, 7, 9.CrossRefGoogle Scholar
  15. 15.
    Zaidi, H., & Erwin, W. D. (2007). Quantitative analysis in nuclear medicine imaging. Journal of Nuclear Medicine, 48, 1401.CrossRefGoogle Scholar
  16. 16.
    Seletchi, E. D. (2008). Medical image processing using MATLAB. Journal of Information Systems & Operations Management, 2, 194–210.Google Scholar
  17. 17.
    Beekman, F. J., Kamphuis, C., & Frey, E. C. (1997). Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Physics in Medicine & Biology, 42, 1619.CrossRefGoogle Scholar
  18. 18.
    Kim, K. M., Varrone, A., Watabe, H., Shidahara, M., Fujita, M., Innis, R. B., et al. (2003). Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. Journal of Nuclear Medicine, 44, 512–519.Google Scholar
  19. 19.
    Dodgas, B., Sattuck, D. W., & Leahy, R. M. (2005). Segmentation of skull and scalp in 3D human MRI using mathematical morphology. Human Brain Mapping, 26(4), 273–285.CrossRefGoogle Scholar
  20. 20.
    Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation 1. Annual Review of Biomedical Engineering, 2, 315–337.CrossRefGoogle Scholar
  21. 21.
    Jannin, P., Grova, C., & Maurer, C. R., Jr. (2006). Model for defining and reporting reference-based validation protocols in medical image processing. International Journal of Computer Assisted Radiology and Surgery, 1, 63–73.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Luz G. Cornejo-Aragón
    • 1
    • 2
  • Clara L. Santos-Cuevas
    • 2
  • Blanca E. Ocampo-García
    • 2
  • Isaac Chairez-Oria
    • 3
  • Lorenza Diaz-Nieto
    • 4
  • Janice García-Quiroz
    • 4
  1. 1.Instituto Nacional de Investigaciones Nucleares (ININ)OcoyoacacMexico
  2. 2.Facultad de MedicinaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI)Instituto Politécnico Nacional (IPN)Gustavo A. MaderoMexico
  4. 4.Departamento de Biología de la ReproducciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránTlalpanMexico

Personalised recommendations