Skip to main content
Log in

Lipids at the air–water interface

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

Lipids are important natural chemical compounds, as they comprise the major component in biological membranes. Biological membranes are composed of lipids in a bilayer structure and proteins incorporated into the bilayers or bound to the bilayer surface. Due to the amphiphilic nature of lipids, they self-assemble in aqueous solution into a variety of lyotropic phases, the most important one being the lamellar phase made up of stacks of lipid bilayers separated by water layers. The bilayer structure can be easily produced by dispersing lipids in water. Lipids are amphiphilic structures built up of a polar headgroup and one or two hydrophobic alkyl chains. They are, therefore, surface active and form the so-called insoluble monolayers or Langmuir films at the air–water interface. These monolayers resemble half of a lipid bilayer and are, therefore, widely used as model systems for bilayer membranes. In this review, the properties and the phase behavior of phospholipid monolayers, as well as the techniques used for studying these monolayers will be described. In addition, examples for the information gained using different techniques will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. Irving Langmuir was born in 1881 in New York and died in 1957 in Woods Hole, USA. In 1932 he was awarded with the Nobel-Prize in Chemistry for his “discoveries and investigations in surface chemistry”. He worked together with Katherine Blodgett on surface adsorption phenomena and on thin films. They developed the concept of a “monolayer”, i.e. a single layer of molecules on a surface. In honor of Langmuir, monolayers of sparingly soluble molecules at the air–water interface were named after him.

  2. Ludwig Ferdinand Wilhelmy was born in 1812 in Stargard, Germany and died in 1864 in Berlin, Germany. From 1849 till 1854 he was academic lecturer at the University of Heidelberg, Germany. In 1863, he published his article on the use of the “Wilhelmy plate” for measuring the surface tension of liquids in the famous journal “Annalen der Physik”.

  3. The surface tension γ is a property of a fluid interface to acquire the least surface area possible. This property arises from the fact that the attractive forces between the molecules in the liquid are higher (cohesion) than the force between molecules in the gas phase and the liquid surface (adsorption). This leads to a net force being directed inward into the liquid and the appearance of the surface as if it were covered by an elastic membrane under tension. Therefore, the term “surface tension” was coined. The surface tension has the dimension of a force per unit length (N m−1), which is equivalent to an energy per unit area (J m−2). Therefore, in many cases the term surface energy is also used. Attractive forces between water molecules in liquid water are very high, because of the occurrence of hydrogen bonds between molecules. Therefore, the surface tension of pure water is also very high with 72 mN m−1, much higher than for other ordinary organic liquids. If the surface is covered by amphiphilic substances, the surface tension decreases, because the attractive forces between these molecules are much lower.

  4. Phase transitions in three dimensions are classified according to Paul Ehrenfest [45, 46]. The classification is based on the properties of the derivatives of the thermodynamic free energy, for instance, the Gibbs free energy with respect to other thermodynamic variables. If the first derivative is discontinuous, then the phase transition is of first order. If the first derivative is continuous and the second derivative discontinuous, then the transition is of second order, etc. Solid–liquid, liquid–gas, and solid–gas transitions of bulk materials are of first order. The terminology was taken over to the classification of two-dimensional transition, i.e., Langmuir monolayers at the air–water interface.

  5. Many fluorescence microscopes used in biophysical studies are of the epifluorescence design (see Fig. 8). The light coming from the excitation light source first passes through an optic filter, where the appropriate wave length for excitation of the fluorescent molecule is selected. The excitation light then passes through a dichroic mirror where it is reflected and focused onto the sample by the objective lens. Light with the wave length of the excitation light reflected from the sample is reflected by the dichroic mirror into the light source. The fluorescence light with a longer wave length emitted from the sample passes through the same objective lens and then is not reflected by the dichroic mirror but passes through the dichroic mirror and through the emission filter which prevents residual excitation light reaching the detector. The emitted light is then focused onto the detector, in this case a high sensitivity CCD camera.

  6. In a GIXD experiment, the incident beam is a monochromatic X-ray beam with a defined wavelength. The beam is adjusted so that it strikes the water surface at an angle just below the critical angle αc for total external reflection at the chosen wavelength. This critical angle αc for total reflection is ~ 0.13° for a wavelength of 0.138 nm (= 9000 eV photon energy). When the beam is totally reflected a so-called evanescent wave travels along the surface of the air–water interface. The penetration depth of this wave is ca. 8 nm, i.e. somewhat larger than the thickness of a typical lipid monolayer. If the monolayer covering the surface has an ordered structure with crystallites, Bragg scattering can occur. The crystallites should be oriented such that lattice planes have an angle Θhk relative to the evanescent beam so that the condition λ = 2dhk sin Θhk for Bragg scattering is fulfilled.

  7. In infrared spectroscopy (IR) the sample is irradiated with radiation covering the infrared region of the electromagnetic spectrum. The so-called mid-IR is the wavelength region between 2.5 and 25 µm, which is equivalent to the wavenumber region between 4000 and 400 cm−1. This type of radiation excites vibrational modes of the molecules under investigation. Organic molecules have a number of vibrational modes which are characteristic for certain “group vibrations”, for instance, the C=O group or the CH2-groups in aliphatic chains of lipids. The IR spectrum shows typical absorption bands which can be analyzed with respect to their frequency (wavenumber) and intensity.

References

  1. Singer SJ, Nicolson GL (1972) Fluid mosaic model of structure of cell membranes. Science 175(4023):720–731. https://doi.org/10.1126/science.175.4023.720

    Article  CAS  Google Scholar 

  2. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838(6):1451–1466. https://doi.org/10.1016/j.bbamem.2013.10.019

    Article  CAS  Google Scholar 

  3. Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49(4):378–389. https://doi.org/10.1016/j.plipres.2010.05.001

    Article  CAS  Google Scholar 

  4. Gennis RB (1990) Biomembranes: molecular structure and function. Springer-Verlag, New York

    Google Scholar 

  5. Buehler LK (2016) Cell membranes. Garland Science, New York

    Google Scholar 

  6. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

    Google Scholar 

  7. Butt H-J, Graf K, Kappl M (2013) Physics and chemistry of interfaces, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  8. Evans RW (1995) Aggregates of saturated phospholipids at the air-water interface. Chem Phys Lipids 78(2):163–175. https://doi.org/10.1016/0009-3084(95)02495-5

    Article  CAS  Google Scholar 

  9. Blume A (1979) A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim Biophys Acta 557(1):32–44. https://doi.org/10.1016/0005-2736(79)90087-7

    Article  CAS  Google Scholar 

  10. Brockman H (1999) Lipid monolayers: why use half a membrane to characterize protein-membrane interactions?. Curr Opin Struct Biol 9(4):438–443. https://doi.org/10.1016/s0959-440x(99)80061-x

    Article  CAS  Google Scholar 

  11. Maget-Dana R (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys Acta 1462(1–2):109–140. https://doi.org/10.1016/s0005-2736(99)00203-5

    Article  CAS  Google Scholar 

  12. Möhwald H (1990) Phospholipid and phospholipid-protein monolayers at the air-water interface. Annu Rev Phys Chem 41:441–476

    Article  Google Scholar 

  13. Giner-Casares JJ, Brezesinski G, Möhwald H (2014) Langmuir monolayers as unique physical models. Curr Opin Colloid Interface Sci 19(3):176–182. https://doi.org/10.1016/j.cocis.2013.07.006

    Article  CAS  Google Scholar 

  14. Stefaniu C, Brezesinski G, Mohwald H (2014) Langmuir monolayers as models to study processes at membrane surfaces. Adv Colloid Interface Sci 208:197–213. https://doi.org/10.1016/j.cis.2014.02.013

    Article  CAS  Google Scholar 

  15. Pichot R, Watson R, Norton I (2013) Phospholipids at the interface: current trends and challenges. Int J Mol Sci 14(6):11767–11794. https://doi.org/10.3390/ijms140611767

    Article  Google Scholar 

  16. Giehl A, Lemm T, Bartelsen O, Sandhoff K, Blume A (1999) Interaction of the GM2-activator protein with phospholipid–ganglioside bilayer membranes and with monolayers at the air–water interface. Eur J Biochem 261(3):650–658. https://doi.org/10.1046/j.1432-1327.1999.00302.x

    Article  CAS  Google Scholar 

  17. Calvez P, Bussières S, Éric D, Salesse C (2009) Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers. Biochimie 91(6):718–733. https://doi.org/10.1016/j.biochi.2009.03.018

    Article  CAS  Google Scholar 

  18. Kaganer VM, Möhwald H, Dutta P (1999) Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71(3):779–819. https://doi.org/10.1103/RevModPhys.71.779

    Article  CAS  Google Scholar 

  19. Stefaniu C, Brezesinski G (2014) Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface. Adv Colloid Interface Sci 207:265–279. https://doi.org/10.1016/j.cis.2014.01.005

    Article  CAS  Google Scholar 

  20. Stefaniu C, Brezesinski G (2014) X-ray investigation of monolayers formed at the soft air/water interface. Curr Opin Colloid Interface Sci 19(3):216–227. https://doi.org/10.1016/j.cocis.2014.01.004

    Article  CAS  Google Scholar 

  21. Bangham AD, Mason W (1979) The effect of some general anaesthetics on the surface potential of lipid monolayers. Br J Pharmacol 66(2):259–265. https://doi.org/10.1111/j.1476-5381.1979.tb13674.x

    Article  CAS  Google Scholar 

  22. Cadenhead DA, Kellner BMJ (1974) Some observations on monolayer spreading solvents with special reference to phospholipid monolayers. J Colloid Interface Sci 49(1):143–145. https://doi.org/10.1016/0021-9797(74)90311-7

    Article  CAS  Google Scholar 

  23. Clarke RJ (2001) The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interface Sci 89–90:263–281. https://doi.org/10.1016/s0001-8686(00)00061-0

    Article  Google Scholar 

  24. Haydon DA, Elliott JR (1986) Surface potential changes in lipid monolayers and the ‘cut-off’ in anaesthetic effects of N-alkanols. Biochim Biophys Acta 863(2):337–340. https://doi.org/10.1016/0005-2736(86)90278-6

    Article  CAS  Google Scholar 

  25. Wang L (2012) Measurements and implications of the membrane dipole potential. Annu Rev Biochem 81(1):615–635. https://doi.org/10.1146/annurev-biochem-070110-123033

    Article  CAS  Google Scholar 

  26. Lösche M, Duwe HP, Möhwald H (1988) Quantitative analysis of surface textures in phospholipid monolayer phase transitions. J Coll Interf Sci 126:432–444

    Article  Google Scholar 

  27. Lösche M, Möhwald H (1984) Impurity controlled phase transitions of phospholipid monolayers. Eur Biophys J 11:35–42

    Article  Google Scholar 

  28. McConnell HM (1984) Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci USA 81:3249–3253

    Article  CAS  Google Scholar 

  29. Hönig D, Möbius D (1991) Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J Phys Chem 95(12):4590–4592. https://doi.org/10.1021/j100165a003

    Article  Google Scholar 

  30. Hénon S, Meunier J (1991) Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Rev Sci Instrum 62(4):936–939. https://doi.org/10.1063/1.1142032

    Article  Google Scholar 

  31. Mobius D (1996) Light microscopy of organized monolayers. Curr Opin Colloid Interface Sci 1(2):250–256. https://doi.org/10.1016/s1359-0294(96)80012-4

    Article  CAS  Google Scholar 

  32. Vollhardt D (2014) Brewster angle microscopy: a preferential method for mesoscopic characterization of monolayers at the air/water interface. Curr Opin Colloid Interface Sci 19(3):183–197. https://doi.org/10.1016/j.cocis.2014.02.001

    Article  CAS  Google Scholar 

  33. Blume A, Kerth A (2013) Peptide and protein binding to lipid monolayers studied by FT-IRRAS. Biochim Biophys Acta 1828(10):2294–2305. https://doi.org/10.1016/j.bbamem.2013.04.014

    Article  CAS  Google Scholar 

  34. Blaudez D, Buffeteau T, Desbat B, Turlet JM (1999) Infrared and Raman spectroscopies of monolayers at the air-water interface. Curr Opin Colloid Interface Sci 4:265–272

    Article  CAS  Google Scholar 

  35. Dluhy RA, Cornell DG (1985) In situ measurements of the infrared-spectra of insoluble monolayers at the air–water interface. J Phys Chem 89(15):3195–3197. https://doi.org/10.1021/j100261a006

    Article  CAS  Google Scholar 

  36. Mendelsohn R, Brauner JW, Gericke A (1995) External infrared reflection-absorption spectrometry of monolayer films at the air–water interface. Annu Rev Phys Chem 46:305–334. https://doi.org/10.1146/annurev.physchem.46.1.305

    Article  CAS  Google Scholar 

  37. Mendelsohn R, Mao GR, Flach CR (2010) Infrared reflection–absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films. Biochim Biophys Acta 1798(4):788–800. https://doi.org/10.1016/j.bbamem.2009.11.024

    Article  CAS  Google Scholar 

  38. Chen X, Clarke ML, Wang JIE, Chen Z (2005) Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces. Int J Mod Phys B 19(04):691–713. https://doi.org/10.1142/s0217979205029341

    Article  CAS  Google Scholar 

  39. Roke S, Schins J, Müller M, Bonn M (2003) Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.90.128101

    Google Scholar 

  40. Watry MR, Tarbuck TL, Richmond GL (2003) Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface. J Phys Chem B 107(2):512–518. https://doi.org/10.1021/jp0216878

    Article  CAS  Google Scholar 

  41. Blume A (2004) Lipids. In: Walz D, Teissié J, Milazzo G (eds) Bioelectrochemistry of membranes, vol V. Birkhäuser-Verlag, Basel, pp 61–152

    Chapter  Google Scholar 

  42. Bard AJ, Inzelt G, Scholz F (2012) Electrochemical dictionary, 2nd edn. Springer, Berlin

  43. Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik Chemie 195(6):177–217. https://doi.org/10.1002/andp.18631950602

    Article  Google Scholar 

  44. Lee KYC (2008) Collapse mechanisms of Langmuir monolayers. Annu Rev Phys Chem 59(1):771–791. https://doi.org/10.1146/annurev.physchem.58.032806.104619

    Article  CAS  Google Scholar 

  45. Atkins P, de Paula J (2010) Physical chemistry, 9th edn edn. Oxford University Press, Oxford

    Google Scholar 

  46. Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53(1):51–81. https://doi.org/10.1007/s004070050021

    Article  Google Scholar 

  47. Gaines GL (1966) Insoluble monolayers at liquid–gas interfaces. Wiley Interscience, New York

    Google Scholar 

  48. Hoffmann S (1997) Struktur und Dynamik langkettiger 5-n-Alkylresorcinole in Phospholipidmodellmembranen, Ph.D., University of Kaiserslautern, Kaiserslautern

    Google Scholar 

  49. Risović D, Frka S, Kozarac Z (2011) Application of Brewster angle microscopy and fractal analysis in investigations of compressibility of Langmuir monolayers. J Chem Phys 134(2):024701. https://doi.org/10.1063/1.3522646

    Article  Google Scholar 

  50. Caruso B, Mangiarotti A, Wilke N (2013) Stiffness of lipid monolayers with phase coexistence. Langmuir 29(34):10807–10816. https://doi.org/10.1021/la4018322

    Article  CAS  Google Scholar 

  51. Duncan SL, Larson RG (2008) Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J 94(8):2965–2986. https://doi.org/10.1529/biophysj.107.114215

    Article  CAS  Google Scholar 

  52. Crane JM, Putz G, Hall SB (1999) Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys J 77(6):3134–3143. https://doi.org/10.1016/s0006-3495(99)77143-2

    Article  CAS  Google Scholar 

  53. Adams EM, Casper CB, Allen HC (2016) Effect of cation enrichment on dipalmitoylphosphatidylcholine (DPPC) monolayers at the air–water interface. J Colloid Interface Sci 478:353–364. https://doi.org/10.1016/j.jcis.2016.06.016

    Article  CAS  Google Scholar 

  54. von Tscharner V, McConnell HM (1981) An alternative view of phospholipid phase behavior at the air–water interface. Microscope and film balance studies. Biophys J 36(2):409–419. https://doi.org/10.1016/s0006-3495(81)84740-6

    Article  Google Scholar 

  55. Träuble H, Eibl H (1974) Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc Natl Acad Sci USA 71(1):214–219

    Article  Google Scholar 

  56. Blume A, Eibl H (1979) The influence of charge on bilayer membranes calorimetric investigations of phosphatidic acid bilayers. Biochim Biophys Acta 558(1):13–21. https://doi.org/10.1016/0005-2736(79)90311-0

    Article  CAS  Google Scholar 

  57. Blume A, Tuchtenhagen J (1992) Thermodynamics of ion binding to phosphatidic acid bilayers. Titration calorimetry of the heat of dissociation of DMPA. Biochemistry 31(19):4636–4642. https://doi.org/10.1021/bi00134a014

    Article  CAS  Google Scholar 

  58. Eibl H, Blume A (1979) The influence of charge on phosphatidic acid bilayer membranes. Biochim Biophys Acta 553(3):476–488. https://doi.org/10.1016/0005-2736(79)90303-1

    Article  CAS  Google Scholar 

  59. Garidel P (1997) The negatively charged phospholipids phosphatidic acid and phosphatidylglycerol, Ph.D, University of Kaiserslautern, Kaiserslautern

    Google Scholar 

  60. Garidel P, Blume A (2005) 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: influence of temperature, pH, ionic strength and binding of alkaline earth cations. Chem Phys Lipids 138(1–2):50–59. https://doi.org/10.1016/j.chemphyslip.2005.08.001

    Article  CAS  Google Scholar 

  61. Kodama M, Shibata O, Nakamura S, Lee S, Sugihara G (2004) A monolayer study on three binary mixed systems of dipalmitoyl phosphatidyl choline with cholesterol, cholestanol and stigmasterol. Colloid Surf B Biointerface 33(3–4):211–226. https://doi.org/10.1016/j.colsurfb.2003.10.008

    Article  CAS  Google Scholar 

  62. Gerdon S, Hoffmann S, Blume A (1994) Properties of mixed monolayers and bilayers of long-chain 5-n-alkylresorcinols and dipalmitoylphosphatidylcholine. Chem Phys Lipids 71(2):229–243. https://doi.org/10.1016/0009-3084(94)90074-4

    Article  CAS  Google Scholar 

  63. Gaines GL (1966) Thermodynamic relationships for mixed insoluble monolayers. J Colloid Interface Sci 21(3):315–319. https://doi.org/10.1016/0095-8522(66)90015-8

    Article  CAS  Google Scholar 

  64. Hildebrandt HJ (1929) Solubility (XII). Regular solutions. J Am Chem Soc 51:66–80

    Article  Google Scholar 

  65. Garidel P, Johann C, Blume A (2000) Thermodynamics of lipid organization and domain formation in phospholipid bilayers. J Liposome Res 10(2–3):131–158. doi:https://doi.org/10.3109/08982100009029383

    CAS  Google Scholar 

  66. Matuo H, Motomura K, Matuura R (1982) Interrelationships between two-dimensional phase diagrams and mean molecular area-mole fraction curves in mixed monolayers. Chem Phys Lipids 30(4):353–365. https://doi.org/10.1016/0009-3084(82)90029-9

    Article  CAS  Google Scholar 

  67. Matuo H, Motomura K, Matuura R (1982) Mixed monolayers of dipalmitoylglycerophosphocholine, distearoylglycerophosphocholine and 1-palmitoylglycerol. Chem Phys Lipids 31(1):53–60. https://doi.org/10.1016/0009-3084(82)90018-4

    Article  CAS  Google Scholar 

  68. Matuo H, Motomura K, Matuura R (1981) Effects of molecular structure on two-dimensional phase diagram and thermodynamic quantities of mixed monolayers. Chem Phys Lipids 28(4):385–397. https://doi.org/10.1016/0009-3084(81)90024-4

    Article  CAS  Google Scholar 

  69. Matuo H, Motomura K, Matuura R (1982) Mixed monolayers of fatty acids with distearoylglycerophosphocholine. Chem Phys Lipids 31(4):351–358. https://doi.org/10.1016/0009-3084(82)90071-8

    Article  CAS  Google Scholar 

  70. Stottrup BL, Nguyen AH, Tüzel E (2010) Taking another look with fluorescence microscopy: image processing techniques in Langmuir monolayers for the twenty-first century. Biochim Biophys Acta 1798(7):1289–1300. https://doi.org/10.1016/j.bbamem.2010.01.003

    Article  CAS  Google Scholar 

  71. Weis RM (1991) Fluorescence microscopy of phospholipid monolayer phase transitions. Chem Phys Lipids 57(2–3):227–239. https://doi.org/10.1016/0009-3084(91)90078-p

    Article  CAS  Google Scholar 

  72. Scholtysek P, Li Z, Kressler J, Blume A (2012) Interactions of DPPC with semitelechelic poly(glycerol methacrylate)s with perfluoroalkyl endgroups. Langmuir 28(44):15651–15662. https://doi.org/10.1021/la3028226

    Article  CAS  Google Scholar 

  73. Scholtysek P (2014) Chirale und achirale Polymere in Wechselwirkung mit Phospholipid-Monolayern und—Bilayern. Ph.D., Martin-Luther-University Halle-Wittenberg, Halle

    Google Scholar 

  74. Cristofolini L (2014) Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Curr Opin Colloid Interface Sci 19(3):228–241. https://doi.org/10.1016/j.cocis.2014.03.006

    Article  CAS  Google Scholar 

  75. Flach CR, Brauner JW, Mendelsohn R (1993) Calcium ion interactions with insoluble phospholipid monolayer films at the A/W interface. External reflection-absorption IR studies. Biophys J 65(5):1994–2001. https://doi.org/10.1016/s0006-3495(93)81276-1

    Article  CAS  Google Scholar 

  76. Flach CR, Gericke A, Mendelsohn R (1997) Quantitative determination of molecular chain tilt angles in monolayer films at the air/water interface: Infrared reflection/absorption spectroscopy of behenic acid methyl ester. J Phys Chem B 101(1):58–65. https://doi.org/10.1021/jp962288d

    Article  CAS  Google Scholar 

  77. Kerth A (2003) Infrarot-Reflexions-Absorptions-Spektroskopie an Lipid-, Peptid- und Flüssigkristall-Filmen an der Luft/Wasser-Grenzfläche. Ph.D., Martin-Luther-University Halle-Wittenberg, Halle

    Google Scholar 

  78. Kuzmin VL, Mikhailov AV (1981) Molecular theory of light reflection and applicability limits of the macroscopic approach. Opt Spectrosc (USSR) 51:383–385

    Google Scholar 

  79. Gericke A, Flach CR, Mendelsohn R (1997) Structure and orientation of lung surfactant SP-C and L-alpha-dipalmitoylphosphatidylcholine in aqueous monolayers. Biophys J 73(1):492–499

    Article  CAS  Google Scholar 

  80. Kerth A, Brehmer T, Meister A, Hanner P, Jakob M, Klösgen RB, Blume A (2012) Interaction of a tat substrate and a tat signal peptide with thylakoid lipids at the air–water interface. Chem Bio Chem 13(2):231–239. https://doi.org/10.1002/cbic.201100458

    Article  CAS  Google Scholar 

  81. Kerth A, Erbe A, Dathe M, Blume A (2004) Infrared reflection absorption spectroscopy of amphipathic model peptides at the air/water interface. Biophys J 86(6):3750–3758. https://doi.org/10.1529/biophysj.103.035964

    Article  CAS  Google Scholar 

  82. Meister A, Nicolini C, Waldmann H, Kuhlmann J, Kerth A, Winter R, Blume A (2006) Insertion of lipidated ras proteins into lipid monolayers studied by infrared reflection absorption spectroscopy (IRRAS). Biophys J 91(4):1388–1401. https://doi.org/10.1529/biophysj.106.084624

    Article  CAS  Google Scholar 

  83. Blume A (1996) Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr Opin Colloid Interface Sci 1(1):64–77. https://doi.org/10.1016/s1359-0294(96)80046-x

    Article  CAS  Google Scholar 

  84. Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57(2–3):213–226. https://doi.org/10.1016/0009-3084(91)90077-o

    Article  CAS  Google Scholar 

  85. Sung W, Kim D, Shen YR (2013) Sum-frequency vibrational spectroscopic studies of Langmuir monolayers. Curr Appl Phys 13(4):619–632. https://doi.org/10.1016/j.cap.2012.12.002

    Article  Google Scholar 

  86. Nihonyanagi S, Yamaguchi S, Tahara T (2017) Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem Rev 117(16):10665–10693. https://doi.org/10.1021/acs.chemrev.6b00728

    Article  CAS  Google Scholar 

  87. Chung C-Y, Potma EO (2013) Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu Rev Phys Chem 64(1):77–99. https://doi.org/10.1146/annurev-physchem-040412-110103

    Article  CAS  Google Scholar 

  88. Jubb AM, Hua W, Allen HC (2012) Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu Rev Phys Chem 63(1):107–130. https://doi.org/10.1146/annurev-physchem-032511-143811

    Article  CAS  Google Scholar 

  89. Sovago M, Vartiainen E, Bonn M (2009) Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy. J Chem Phys 131(16):161107. https://doi.org/10.1063/1.3257600

    Article  Google Scholar 

  90. Sovago M, Vartiainen E, Bonn M (2010) Erratum: “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy”. [J Chem Phys 131, 161107 (2009)]. J Chem Phys 133(22):229901. https://doi.org/10.1063/1.3511705

    Article  Google Scholar 

  91. Feng R-J, Li X, Zhang Z, Lu Z, Guo Y (2016) Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface. J Chem Phys 145(24):244707. https://doi.org/10.1063/1.4972564

    Article  Google Scholar 

  92. Chen X, Hua W, Huang Z, Allen HC (2010) Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc 132(32):11336–11342. https://doi.org/10.1021/ja1048237

    Article  CAS  Google Scholar 

  93. Ma G, Allen HC (2006) DPPC Langmuir monolayer at the air–water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir 22(12):5341–5349. https://doi.org/10.1021/la0535227

    Article  CAS  Google Scholar 

  94. Hadicke A, Blume A (2013) Interactions of Pluronic block copolymers with lipid monolayers studied by epi-fluorescence microscopy and by adsorption experiments. J Colloid Interface Sci 407(327–338):327–338. https://doi.org/10.1016/j.jcis.2013.06.041

    Article  CAS  Google Scholar 

  95. Amado E, Kerth A, Blume A, Kressler J (2009) Phospholipid crystalline clusters induced by adsorption of novel amphiphilic triblock copolymers to monolayers. Soft Matter 5(3):669–675. doi:https://doi.org/10.1039/B813994f

    CAS  Google Scholar 

  96. Arouri A, Kerth A, Dathe M, Blume A (2011) The binding of an amphipathic peptide to lipid monolayers at the air/water interface is modulated by the lipid headgroup structure. Langmuir 27(6):2811–2818. https://doi.org/10.1021/la104887s

    Article  CAS  Google Scholar 

  97. Erbe A, Kerth A, Dathe M, Blume A (2009) Interactions of KLA amphipathic model peptides with lipid monolayers. Chem Bio Chem 10(18):2884–2892. https://doi.org/10.1002/cbic.200900444

    Article  CAS  Google Scholar 

  98. Hadicke A, Blume A (2015) Binding of short cationic peptides (KX)4K to negatively charged DPPG monolayers: competition between electrostatic and hydrophobic interactions. Langmuir 31(44):12203–12214. https://doi.org/10.1021/acs.langmuir.5b02882

    Article  Google Scholar 

  99. Hadicke A, Blume A (2016) Binding of the cationic peptide (KL)4K to lipid monolayers at the air-water interface: effect of lipid headgroup charge, acyl chain length, and acyl chain saturation. J Phys Chem B 120(16):3880–3887. https://doi.org/10.1021/acs.jpcb.6b01558

    Article  Google Scholar 

  100. Brehmer T, Kerth A, Graubner W, Malesevic M, Hou B, Bruser T, Blume A (2012) Negatively charged phospholipids trigger the interaction of a bacterial tat substrate precursor protein with lipid monolayers. Langmuir 28(7):3534–3541. https://doi.org/10.1021/la204473t

    Article  CAS  Google Scholar 

  101. Kerth A, Garidel P, Howe J, Alexander C, Mach J-P, Waelli T, Blume A, Rietschel ETh, Brandenburg K (2009) an infrared reflection–absorption spectroscopic (IRRAS) study of the interaction of Lipid A and lipopolysaccharide re with endotoxin-binding proteins. Med Chem 5(6):535–542. https://doi.org/10.2174/157340609790170452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Deutsche Forschungsgemeinschaſt (DFG), the state of Saxonia-Anhalt, the Phospholipid Research Center, Heidelberg, Germany, and Boehringer Ingelheim GmbH and Co, Ingelheim, Germany. I want to express my gratitude to all members of my group for their contributions to the research results presented here in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Blume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blume, A. Lipids at the air–water interface. ChemTexts 4, 3 (2018). https://doi.org/10.1007/s40828-018-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-018-0058-z

Keywords

Navigation