Skip to main content

Advertisement

Log in

Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology

  • Effects of Landscape Structure on Conservation of Species and Biodiversity (J Watling, Section Editor)
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Climate change and habitat modification both alter thermal environments and species distributions. However, these drivers of global change are rarely studied together, even though many species are experiencing climate change and habitat modification simultaneously. Here we review existing literature and propose avenues for merging the largely disparate lines of climate and landscape ecological research using temperature exposure and species’ thermal sensitivity as a shared framework. The integration of research on climate and landscape change is in the early stages and lags behind research focused solely on the ecological effects of climate change. Recent studies highlight important mismatches between the resolution of widely used climate datasets and ecological processes, which can be addressed through detailed mapping of thermal landscapes and the microclimates within them. Furthermore, the thermal niches of species, evolved under past climates, can predict the responses of species to changing microclimates associated with habitat modification; this suggests that microclimates and thermal niches may together act as a common filter, reassembling communities in response to both climate and landscape change. There is a need to further integrate microclimate and thermal niche data into landscape ecological research to advance our basic understanding of the combined effects of landscape and climate change and to provide actionable data for climate adaptation strategies that largely focus on activities at landscape scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  1. Jetz W, Wilcove DS, Dobson AP. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 2007;5(6):e157.

    PubMed  PubMed Central  Google Scholar 

  2. Mantyka-Pringle CS, Martin TG, Rhodes JR. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol. 2012;18(4):1239–52. https://doi.org/10.1111/j.1365-2486.2011.02593.x.

    Article  Google Scholar 

  3. Potter KA, Arthur Woods H, Pincebourde S. Microclimatic challenges in global change biology. Glob Chang Biol. 2013;19(10):2932–9. https://doi.org/10.1111/gcb.12257.

    Article  PubMed  Google Scholar 

  4. Bonebrake TC, Brown CJ, Bell JD, Blanchard JL, Chauvenet A, ChampionC, et al. Managing consequences of climate‐driven species redistribution requires integration of ecology, conservation and social science. Bio Rev. 2018;93(1):284–305.

    PubMed  Google Scholar 

  5. Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP, et al. Adaptation needs and options. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, United Kingdom and New York, NY, USA. Cambridge: Cambridge University Press; 2014. p. 833–68.

  6. Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Chang. 2014;5(3):317–35. https://doi.org/10.1002/wcc.271.

    Article  Google Scholar 

  7. Sirami C, Caplat P, Popy S, Clamens A, Arlettaz R, Jiguet F, et al. Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob Ecol Biogeogr. 2017;26(4):385–94. https://doi.org/10.1111/geb.12555.

    Article  Google Scholar 

  8. Watling JI, Donnelly MA. Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv Biol. 2006;20(4):1016–25. https://doi.org/10.1111/j.1523-1739.2006.00482.x.

    Article  PubMed  Google Scholar 

  9. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1(2):e1500052.

    PubMed  PubMed Central  Google Scholar 

  10. Nowakowski AJ, Dewoody JA, Fagan ME, Willoughby JR, Donnelly MA. Mechanistic insights into landscape genetic structure of two tropical amphibians using field-derived resistance surfaces. Mol Ecol. 2015;24(3):580–95. https://doi.org/10.1111/Mec.13052.

    Article  PubMed  Google Scholar 

  11. Todd BD, Luhring TM, Rothermel BB, Gibbons JW. Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J Appl Ecol. 2009;46(3):554–61.

    Google Scholar 

  12. Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecol Biogeogr. 2011;20(2):209–17. https://doi.org/10.1111/j.1466-8238.2010.00586.x.

    Article  Google Scholar 

  13. Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520(7545):45–50. https://doi.org/10.1038/nature14324.

    Article  CAS  PubMed  Google Scholar 

  14. Todd BD, Andrews KM. Response of a reptile guild to forest harvesting. Conserv Biol. 2008;22(3):753–61.

    PubMed  Google Scholar 

  15. Hanski I, Schulz T, Wong SC, Ahola V, Ruokolainen A, Ojanen SP. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat Commun. 2017;8:14504.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karp DS, Mendenhall CD, Sandí RF, Chaumont N, Ehrlich PR, Hadly EA, et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett. 2013;16(11):1339–47.

    PubMed  Google Scholar 

  17. Kormann U, Scherber C, Tscharntke T, Klein N, Larbig M, Valente JJ, et al. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc. R. Soc. B, 2016;283(1823), 20152347.

    PubMed  Google Scholar 

  18. Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016;354(6313):aaf7671.

    PubMed  Google Scholar 

  19. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.

    CAS  PubMed  Google Scholar 

  20. Sheridan JA, Bickford D. Shrinking body size as an ecological response to climate change. Nat Clim Chang. 2011;1(8):401–6.

    Google Scholar 

  21. Todd BD, Scott DE, Pechmann JHK, Gibbons JW. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc R Soc B-Biol Sci. 2011;278(1715):2191–7. https://doi.org/10.1098/rspb.2010.1768.

    Article  Google Scholar 

  22. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C. Adapting to climate change: a perspective from evolutionary physiology. Clim Res. 2010;43(1/2):3–15.

    Google Scholar 

  23. Fey SB, Siepielski AM, Nusslé S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc Natl Acad Sci U S A. 2015;112(4):1083–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.

    CAS  PubMed  Google Scholar 

  25. Tingley MW, Beissinger SR. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology. 2013;94(3):598–609.

    PubMed  Google Scholar 

  26. Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1596):1665–79. https://doi.org/10.1098/rstb.2012.0005.

    Article  Google Scholar 

  27. Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA. Microhabitats reduce animal's exposure to climate extremes. Glob Chang Biol. 2014;20(2):495–503. https://doi.org/10.1111/gcb.12439.

    Article  PubMed  Google Scholar 

  28. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci U S A. 2014;111(15):5610–5. https://doi.org/10.1073/pnas.1316145111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lenoir J, Hattab T, Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40(2):253–66. https://doi.org/10.1111/ecog.02788.

    Article  Google Scholar 

  30. Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA. Does forest fragmentation cause an increase in forest temperature? Ecol Res. 2016;32(1):81–8. https://doi.org/10.1007/s11284-016-1411-6.

    Article  Google Scholar 

  31. Tuff KT, Tuff T, Davies KF. A framework for integrating thermal biology into fragmentation research. Ecol Lett. 2016;19(4):361–74. https://doi.org/10.1111/ele.12579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008;6(12):e325.

    PubMed Central  Google Scholar 

  33. Carroll C. Role of climatic niche models in focal-species-based conservation planning: assessing potential effects of climate change on northern spotted owl in the Pacific Northwest. USA Biol Conserv. 2010;143(6):1432–7.

    Google Scholar 

  34. Loiselle BA, Graham CH, Goerck JM, Ribeiro MC. Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests. Brazil J Biogeography. 2010;37(7):1288–301. https://doi.org/10.1111/j.1365-2699.2010.02285.x.

    Article  Google Scholar 

  35. Bateman BL, Pidgeon AM, Radeloff VC, VanDerWal J, Thogmartin WE, Vavrus SJ, et al. The pace of past climate change vs. potential bird distributions and land use in the United States. Glob Chang Biol. 2016;22(3):1130–44.

    PubMed  Google Scholar 

  36. Prince K, Lorrilliere R, Barbet-Massin M, Leger F, Jiguet F. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts. PLoS One. 2015;10(2):e0117850. https://doi.org/10.1371/journal.pone.0117850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hockey PAR, Sirami C, Ridley AR, Midgley GF, Babiker HA. Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Divers Distrib. 2011;17(2):254–61. https://doi.org/10.1111/j.1472-4642.2010.00741.x.

    Article  Google Scholar 

  38. Jarzyna MA, Porter WF, Maurer BA, Zuckerberg B, Finley AO. Landscape fragmentation affects responses of avian communities to climate change. Glob Chang Biol. 2015;21(8):2942–53. https://doi.org/10.1111/gcb.12885.

    Article  PubMed  Google Scholar 

  39. Jarzyna MA, Zuckerberg B, Finley AO, Porter WF. Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landsc Ecol. 2016;31(10):2275–90. https://doi.org/10.1007/s10980-016-0399-1.

    Article  Google Scholar 

  40. Blaum N, Schwager M, Wichmann MC, Rossmanith E. Climate induced changes in matrix suitability explain gene flow in a fragmented landscape - the effect of interannual rainfall variability. Ecography. 2012;35(7):650–60. https://doi.org/10.1111/j.1600-0587.2011.07154.x.

    Article  Google Scholar 

  41. Pilliod DS, Arkle RS, Robertson JM, Murphy MA, Funk WC. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape. Ecol Evol. 2015;5(18):3979–94. https://doi.org/10.1002/ece3.1634.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Virkkala R, Poyry J, Heikkinen RK, Lehikoinen A, Valkama J. Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecol Evol. 2014;4(15):2991–3003. https://doi.org/10.1002/ece3.1162.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Popescu VD, Rozylowicz L, Cogalniceanu D, Niculae IM, Cucu AL. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS One. 2013;8(11):e79330. https://doi.org/10.1371/journal.pone.0079330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watling JI, Braga L. Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc Ecol. 2015; https://doi.org/10.1007/s10980-015-0198-0.

    Google Scholar 

  45. Woods HA, Dillon ME, Pincebourde S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol. 2015;54:86–97. https://doi.org/10.1016/j.jtherbio.2014.10.002.

    Article  PubMed  Google Scholar 

  46. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78. https://doi.org/10.1002/joc.1276.

    Article  Google Scholar 

  47. Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, et al. Does size matter for dispersal distance? Glob Ecol Biogeogr. 2007;16(4):415–25.

    Google Scholar 

  48. Scheffers BR, Evans TA, Williams SE, Edwards DP. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol Lett. 2014;10(12):20140819. https://doi.org/10.1098/rsbl.2014.0819.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pringle RM, Webb JK, Shine R. Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology. 2003;84(10):2668–79.

    Google Scholar 

  50. González del Pliego P, Scheffers BR, Basham EW, Woodcock P, Wheeler C, Gilroy JJ, et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol Conserv. 2016;201:385–95. https://doi.org/10.1016/j.biocon.2016.07.038.

    Article  Google Scholar 

  51. Pincebourde S, Murdock CC, Vickers M, Sears MW. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr Comp Biol. 2016;56(1):45–61. https://doi.org/10.1093/icb/icw016.

    Article  PubMed  Google Scholar 

  52. Pincebourde S, Suppo C. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr Comp Biol. 2016;56(1):85–97. https://doi.org/10.1093/icb/icw014.

    Article  PubMed  Google Scholar 

  53. Goller M, Goller F, French SS. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol Evol. 2014;4(17):3319–29. https://doi.org/10.1002/ece3.1141.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shi H, Paull D, Wen Z, Broome L. Thermal buffering effect of alpine boulder field microhabitats in Australia: implications for habitat management and conservation. Biol Conserv. 2014;180:278–87.

    Google Scholar 

  55. Scheffers BR, Shoo L, Phillips B, Macdonald SL, Anderson A, VanDerWal J, et al. Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Global Ecology and Biogeography 2017;26(7), 787–798.

    Google Scholar 

  56. Scheffers BR, Phillips BL, Shoo LP. Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation. 2014;2:37–46.

    Google Scholar 

  57. Robinson D, Warmsley A, Nowakowski AJ, Reider KE, Donnelly MA. The value of remnant trees in pastures for a neotropical poison frog. J Trop Ecol. 2013;29:345–52. https://doi.org/10.1017/S0266467413000382.

    Article  Google Scholar 

  58. Senior RA, Hill JK, González del Pliego P, Goode LK, Edwards DP. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol Evol. 2017;7(19):7897–908.

    PubMed  PubMed Central  Google Scholar 

  59. Nowakowski AJ, Watling JI, Whitfield SM, Todd BD, Kurz DJ, Donnelly MA. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conserv Biol. 2017;31(1):96–105.

    PubMed  Google Scholar 

  60. Laurance WF. Forest-climate interactions in fragmented tropical landscapes. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359(1443):345–52. https://doi.org/10.1098/rstb.2003.1430.

    Article  Google Scholar 

  61. Sears MW, Raskin E, Angilletta MJ Jr. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr Comp Biol. 2011;51(5):666–75. https://doi.org/10.1093/icb/icr111.

    Article  PubMed  Google Scholar 

  62. Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB, McCullough IM. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol. 2014;29(7):390–7. https://doi.org/10.1016/j.tree.2014.04.006.

    Article  PubMed  Google Scholar 

  63. Grau HR, Aide M. Globalization and land-use transitions in Latin America. Ecol Soc. 2008;13(2).

  64. Joppa LN, Pfaff A. High and far: biases in the location of protected areas. PLoS One. 2009;4(12):e8273.

    PubMed  PubMed Central  Google Scholar 

  65. Poage MA, Chamberlain CP. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci. 2001;301(1):1–15. https://doi.org/10.2475/Ajs.301.1.1.

    Article  CAS  Google Scholar 

  66. Frishkoff LO, Hadly EA, Daily GC. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob Chang Biol. 2015;21(11):3901–16.

    PubMed  Google Scholar 

  67. Yoshino M. Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal. 1984;8(3):235–50.

    Google Scholar 

  68. Kearney MR, Isaac AP, Porter WP. microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci Data. 2014;1:140006.

    PubMed  PubMed Central  Google Scholar 

  69. Cosentino BJ, Schooley RL, Phillips CA. Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecol. 2011;26(3):371–9. https://doi.org/10.1007/s10980-010-9563-1.

    Article  Google Scholar 

  70. Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos. 2011;120(1):1–8.

    Google Scholar 

  71. Villegas JC, Breshears DD, Zou CB, Royer PD. Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J. 2010;9(3):537. https://doi.org/10.2136/vzj2009.0032.

    Article  Google Scholar 

  72. Chen J, Franklin JF, Spies TA. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl. 1995;5(1):74–86.

    Google Scholar 

  73. Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science. 2017;357(6350):495–8.

    CAS  PubMed  Google Scholar 

  74. Latimer CE, Zuckerberg B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography. 2017;40(1):158–70. https://doi.org/10.1111/ecog.02551.

    Article  Google Scholar 

  75. Xing S, Bonebrake TC, Tang CC, Pickett EJ, Cheng W, Greenspan SE, et al. Cool habitats support darker and bigger butterflies in Australian tropical forests. Ecol Evol. 2016;6(22):8062–74.

    PubMed  PubMed Central  Google Scholar 

  76. Kearney M, Shine R, Porter WP. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci U S A. 2009;106(10):3835–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Peaden JM, Nowakowski AJ, Tuberville TD, Buhlmann KA, Todd BD. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol Conserv. 2017;214:13–22.

    Google Scholar 

  78. Saudreau M, Ezanic A, Adam B, Caillon R, Walser P, Pincebourde S. Temperature heterogeneity over leaf surfaces: the contribution of the lamina microtopography. Plant Cell Environment. 2017;40(10):2174–88. https://doi.org/10.1111/pce.13026.

    Article  CAS  Google Scholar 

  79. Buckley LB, Huey RB. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob Chang Biol. 2016;22(12):3829–42.

    PubMed  Google Scholar 

  80. Solomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A. 2009;106(6):1704–9. https://doi.org/10.1073/pnas.0812721106.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Huang S-P, Porter WP, Tu M-C, Chiou C-R. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia. 2014;175(1):25–35.

    PubMed  Google Scholar 

  82. Nadeau CP, Urban MC, Bridle JR. Coarse climate change projections for species living in a fine-scaled world. Glob Chang Biol. 2017;23(1):12–24. https://doi.org/10.1111/gcb.13475.

    Article  PubMed  Google Scholar 

  83. WMO. Guidelines on climate observation networks and systems. Geneva: Switzerland: World Meteorological Organization; 2003.

    Google Scholar 

  84. Storlie C, Merino-Viteri A, Phillips B, VanDerWal J, Welbergen J, Williams S. Stepping inside the niche: microclimate data are critical for accurate assessment of species9 vulnerability to climate change. Biol Lett. 2014;10(9):20140576.

    PubMed  PubMed Central  Google Scholar 

  85. McCullough EC, Porter WP. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology. 1971;52(6):1008–15.

    Google Scholar 

  86. Gates DM. Biophysical Ecology. Springer, New York, 1980; p 611.

    Google Scholar 

  87. Porter W, Mitchell J, Beckman W, DeWitt C. Behavioral implications of mechanistic ecology. Oecologia. 1973;13(1):1–54.

    CAS  PubMed  Google Scholar 

  88. Fridley JD. Downscaling climate over complex terrain: high finescale (< 1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J Appl Meteorol Climatol. 2009;48(5):1033–49.

    Google Scholar 

  89. Storlie C, Phillips B, VanDerWal J, Williams S. Improved spatial estimates of climate predict patchier species distributions. Divers Distrib. 2013;19(9):1106–13.

    Google Scholar 

  90. Frey SJ, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv. 2016;2(4):e1501392.

    PubMed  PubMed Central  Google Scholar 

  91. Agha M, Price SJ, Nowakowski AJ, Augustine B, Todd BD. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather. Dis Aquat Organ. 2017;124(2):91–100.

    PubMed  Google Scholar 

  92. Roznik EA, Alford RA. Using pairs of physiological models to estimate temporal variation in amphibian body temperature. J Therm Biol. 2014;45:22–9.

    PubMed  Google Scholar 

  93. Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, et al. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol. 2017; https://doi.org/10.1111/1365-2435.12944.

    Google Scholar 

  94. Scheffers BR, Edwards DP, Macdonald SL, Senior RA, Andriamahohatra LR, Roslan N, et al. Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica. 2017;49(1):35–44.

    Google Scholar 

  95. Faye E, Rebaudo F, Yánez-Cajo D, Cauvy-Fraunié S, Dangles O, Tatem A. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol Evol. 2016;7(4):437–46. https://doi.org/10.1111/2041-210x.12488.

    Article  Google Scholar 

  96. Agha M, Augustine B, Lovich JE, Delaney D, Sinervo B, Murphy MO, et al. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii). J Therm Biol. 2015;49:119–26.

    PubMed  Google Scholar 

  97. Tracy CR. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol Monogr. 1976;46(3):293–326.

    Google Scholar 

  98. Varner J, Dearing MD. The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One. 2014;9(8):e104648.

    PubMed  PubMed Central  Google Scholar 

  99. Senior RA, Hill JK, Benedick S, Edwards DP. Tropical forests are thermally buffered despite intensive selective logging. Glob Chang Biol. 2017;24:1267–78.

    PubMed  Google Scholar 

  100. Godsoe W, Jankowski J, Holt RD, Gravel D. Integrating biogeography with contemporary niche theory. Trends Ecol Evol. 2017;32:488–99.

    PubMed  Google Scholar 

  101. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A. 2008;105(18):6668–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett. 2009;12(4):334–50. https://doi.org/10.1111/j.1461-0248.2008.01277.x.

    Article  PubMed  Google Scholar 

  103. Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat Clim Chang. 2012;2(9):686–90. https://doi.org/10.1038/nclimate1539.

    Article  Google Scholar 

  104. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3):231–59.

    Google Scholar 

  105. Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F. Relating habitat and climatic niches in birds. PLoS One. 2012;7(3):e32819.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nadeau CP, Urban MC, Bridle JR. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol Evol. 2017;32(10):786–800.

    PubMed  Google Scholar 

  107. Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, et al. Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang. 2014;4(3):217–21.

    Google Scholar 

  108. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett. 2016;19(11):1372–85.

    PubMed  Google Scholar 

  109. Huey RB, Stevenson R. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19:357–66.

    Google Scholar 

  110. Navas CA, Gomes FR, Carvalho JE. Thermal relationships and exercise physiology in anuran amphibians: integration and evolutionary implications. Comp Biochem Physiol A Mol Integr Physiol. 2008;151(3):344–62. https://doi.org/10.1016/j.cbpa.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  111. Hertz PE, Huey RB, Stevenson R. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat. 1993;142(5):796–818.

    CAS  PubMed  Google Scholar 

  112. Sears MW, Angilletta MJ Jr. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am Nat. 2015;185(4):E94–E102. https://doi.org/10.1086/680008.

    Article  PubMed  Google Scholar 

  113. Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. Oxford: Oxford University Press; 2009.

    Google Scholar 

  114. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL. Heat freezes niche evolution. Ecol Lett. 2013;16(9):1206–19.

    PubMed  Google Scholar 

  115. Jessop TS, Letnic M, Webb JK, Dempster T. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment. Proc Biol Sci. 2013;280(1768):20131444. https://doi.org/10.1098/rspb.2013.1444.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rittenhouse TA, Harper EB, Rehard LR, Semlitsch RD. The role of microhabitats in the desiccation and survival of anurans in recently harvested oak–hickory forest. Copeia. 2008;2008(4):807–14.

    Google Scholar 

  117. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, et al. Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci. 2009;276(1664):1939–48.

    Google Scholar 

  118. Navas CA, Gomes FR, De Domenico EA. Physiological ecology and conservation of anuran amphibians. In: de Andrade DV, Bevier CR, de Carvalho JE, editors. Amphibian and Reptile Adaptations to the Environment: Interplay Between Physiology and Behavior. Boca Raton: CRC Press; 2016. p. 155–88.

    Google Scholar 

  119. Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagran-Santa Cruz M, et al. Erosion of lizard diversity by climate change and altered thermal niches. Science. 2010;328(5980):894–9. https://doi.org/10.1126/science.1184695.

    Article  CAS  PubMed  Google Scholar 

  120. Clusella-Trullas S, Blackburn TM, Chown SL. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat. 2011;177(6):738–51.

    PubMed  Google Scholar 

  121. Nowakowski AJ, Watling JI, Thompson ME, Brusch IV, GA, Catenazzi A, Whitfield SM, et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett. 2018;21(3), 345–355.

    PubMed  Google Scholar 

  122. Kivivuori LA, Lahdes EO. How to measure the thermal death of Daphnia? A comparison of different heat tests and effects of heat injury. J Therm Biol. 1996;21(5):305–11.

    Google Scholar 

  123. Simon MN, Ribeiro PL, Navas CA. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. J Therm Biol. 2015;48:36–44. https://doi.org/10.1016/j.jtherbio.2014.12.008.

    Article  PubMed  Google Scholar 

  124. Scheffers BR, Brunner RM, Ramirez SD, Shoo LP, Diesmos A, Williams SE. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica. 2013;45(5):628–35.

    Google Scholar 

  125. Greenspan SE, Bower DS, Roznik EA, Pike DA, Marantelli G, Alford RA, et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci Rep. 2017;7(1):9349.

    PubMed  PubMed Central  Google Scholar 

  126. Richter-Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution. 2015;69(8):2210–26. https://doi.org/10.1111/evo.12711.

    Article  PubMed  Google Scholar 

  127. Llewelyn J, Macdonald SL, Hatcher A, Moritz C, Phillips BL, Franklin J. Intraspecific variation in climate-relevant traits in a tropical rainforest lizard. Divers Distrib. 2016;22(10):1000–12. https://doi.org/10.1111/ddi.12466.

    Article  Google Scholar 

  128. Grigg JW, Buckley LB. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett. 2013;9(2):20121056.

    PubMed  PubMed Central  Google Scholar 

  129. Hoffmann AA, Chown SL, Clusella-Trullas S, Fox C. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol. 2013;27(4):934–49. https://doi.org/10.1111/j.1365-2435.2012.02036.x.

    Article  Google Scholar 

  130. Clusella-Trullas S, Chown SL. Lizard thermal trait variation at multiple scales: a review. J Comp Physiol B. 2014;184(1):5–21.

    PubMed  Google Scholar 

  131. Munoz MM, Stimola MA, Algar AC, Conover A, Rodriguez AJ, Landestoy MA, et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc R Soc Lond B Biol Sci. 2014;281(1778):20132433.

    Google Scholar 

  132. Angilletta MJ Jr, Wilson RS, Niehaus AC, Sears MW, Navas CA, Ribeiro PL. Urban physiology: city ants possess high heat tolerance. PLoS One. 2007;2(2):e258.

    PubMed  PubMed Central  Google Scholar 

  133. Briscoe NJ, Handasyde KA, Griffiths SR, Porter WP, Krockenberger A, Kearney MR. Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biol Lett. 2014;10(6):20140235.

    PubMed  PubMed Central  Google Scholar 

  134. Gordon G, Brown A, Pulsford T. A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in South-Western Queensland. Austral Ecology. 1988;13(4):451–61.

    Google Scholar 

  135. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.

    Google Scholar 

  136. Welbergen JA, Klose SM, Markus N, Eby P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci. 2008;275(1633):419–25. https://doi.org/10.1098/rspb.2007.1385.

    Article  Google Scholar 

  137. Sears MW, Angilletta MJ Jr, Schuler MS, Borchert J, Dilliplane KF, Stegman M, et al. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc Natl Acad Sci U S A. 2016;113(38):10595–600. https://doi.org/10.1073/pnas.1604824113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lima SL, Zollner PA. Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol. 1996;11(3):131–5.

    CAS  PubMed  Google Scholar 

  139. Nowakowski AJ, Jimenez BO, Allen M, Diaz-Escobar M, Donnelly MA. Landscape resistance to movement of the poison frog, Oophaga pumilio, in the lowlands of northeastern Costa Rica. Anim Conserv. 2013;16(2):188–97. https://doi.org/10.1111/j.1469-1795.2012.00585.x.

    Article  Google Scholar 

  140. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, et al. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience. 1999;49(4):288–97.

    Google Scholar 

  141. Albright TP, Mutiibwa D, Gerson AR, Smith EK, Talbot WA, O’Neill JJ, et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc Natl Acad Sci U S A. 2017;114:2283–8. 201613625

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Tracy CR, Christian KA, Burnip N, Austin BJ, Cornall A, Iglesias S, et al. Thermal and hydric implications of diurnal activity by a small tropical frog during the dry season. Austral Ecol. 2013;38(4):476–83. https://doi.org/10.1111/j.1442-9993.2012.02416.x.

    Article  Google Scholar 

  143. Tracy CR, Christian KA, Tracy CR. Not just small, wet, and cold: effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology. 2010;91(5):1477–84.

    PubMed  Google Scholar 

  144. Nowakowski AJ, Veiman-Echeverria M, Kurz DJ, Donnelly MA. Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol Appl. 2015;25(4):928–42.

    PubMed  Google Scholar 

  145. McCain CM, Colwell RK. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett. 2011;14(12):1236–45.

    PubMed  Google Scholar 

  146. Peterman WE, Semlitsch RD. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia. 2014;176(2):357–69. https://doi.org/10.1007/s00442-014-3041-4.

    Article  CAS  PubMed  Google Scholar 

  147. Rothermel BB, Semlitsch RD. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv Biol. 2002;16(5):1324–32.

    Google Scholar 

  148. Tingley R, Shine R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS One. 2011;6(10):e25979.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Frishkoff LO, Karp DS, Flanders JR, Zook J, Hadly EA, Daily GC, et al. Climate change and habitat conversion favour the same species. Ecol Lett. 2016;19(9):1081–90.

    PubMed  Google Scholar 

  150. Karp DS, Frishkoff LO, Echeverri A, Zook J, Juárez P, Chan K. Agriculture erases climate-driven β-diversity in neotropical bird communities. Glob Chang Biol. 2017;24:338–49.

    PubMed  Google Scholar 

  151. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355(6332):eaai9214.

    PubMed  Google Scholar 

  152. Tayleur CM, Devictor V, Gaüzère P, Jonzén N, Smith HG, Lindström Å, et al. Regional variation in climate change winners and losers highlights the rapid loss of cold-dwelling species. Divers Distrib. 2016;22(4):468–80. https://doi.org/10.1111/ddi.12412.

    Article  Google Scholar 

  153. Clavero M, Villero D, Brotons L. Climate change or land use dynamics: do we know what climate change indicators indicate? PLoS One. 2011;6(4):e18581.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bowler D, Böhning-Gaese K. Improving the community-temperature index as a climate change indicator. PLoS One. 2017;12(9):e0184275.

    PubMed  PubMed Central  Google Scholar 

  155. Bush A, Mokany K, Catullo R, Hoffmann A, Kellermann V, Sgrò C, et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol Lett. 2016;19(12):1468–78.

    PubMed  Google Scholar 

  156. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008;11(12):1351–63. https://doi.org/10.1111/j.1461-0248.2008.01250.x.

    Article  PubMed  Google Scholar 

  157. Ockendon N, Baker DJ, Carr JA, White EC, Almond RA, Amano T, et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob Chang Biol. 2014;20(7):2221–9. https://doi.org/10.1111/gcb.12559.

    Article  PubMed  Google Scholar 

  158. Laurance WF, Camargo JLC, Fearnside PM, Lovejoy TE, Williamson GB, Mesquita RCG, et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol Rev. 2018;93(1):223–47. https://doi.org/10.1111/brv.12343.

    Article  PubMed  Google Scholar 

  159. Urban MC, Tewksbury JJ, Sheldon KS. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc Lond B Biol Sci. 2012;279(1735):2072–80. https://doi.org/10.1098/rspb.2011.2367.

    Article  Google Scholar 

  160. Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4(1):eaao2314. https://doi.org/10.1126/sciadv.aao2314.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Nowakowski AJ, Whitfield SM, Eskew EA, Thompson ME, Rose JP, Caraballo BL, et al. Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances. Ecol Lett. 2016;19(9):1051–61. https://doi.org/10.1111/ele.12641.

    Article  PubMed  Google Scholar 

  162. Kormann U, Scherber C, Tscharntke T, Klein N, Larbig M, Valente JJ. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc R Soc Lond B Biol Sci. 2016;283(1823):20152347. https://doi.org/10.1098/rspb.2015.2347.

    Article  CAS  Google Scholar 

  163. Terborgh J, Lopez L, Nuñez, Rao M, Shahabuddin G, Orihuela G, et al. Ecological meltdown in predator-free forest fragments. Science. 2001;294(5548):1923–6.

    CAS  PubMed  Google Scholar 

  164. Feeley KJ, Rehm EM. Amazon's vulnerability to climate change heightened by deforestation and man-made dispersal barriers. Glob Chang Biol. 2012;18(12):3606–14. https://doi.org/10.1111/gcb.12012.

    Article  Google Scholar 

  165. Nunez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, et al. Connectivity planning to address climate change. Conserv Biol. 2013;27(2):407–16. https://doi.org/10.1111/cobi.12014.

    Article  PubMed  Google Scholar 

  166. Damschen EI, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ. Corridors increase plant species richness at large scales. Science. 2006;313(5791):1284–6.

    CAS  PubMed  Google Scholar 

  167. McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology. 2008;89(10):2712–24.

    PubMed  Google Scholar 

  168. Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, et al. Special report on emissions scenarios, working group III, Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press; 2000. 595pp ISBN 0.2000;521(80493):0

    Google Scholar 

  169. Bartelt PE, Klaver RW, Porter WP. Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrus (=Bufo) boreas, across present and future landscapes. Ecol Model. 2010;221(22):2675–86. https://doi.org/10.1016/j.ecolmodel.2010.07.009.

    Article  Google Scholar 

  170. Krosby M, Tewksbury J, Haddad NM, Hoekstra J. Ecological connectivity for a changing climate. Conserv Biol. 2010;24(6):1686–9.

    PubMed  Google Scholar 

  171. Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Chang. 2015;5(3):215–24. https://doi.org/10.1038/nclimate2448.

    Article  Google Scholar 

  172. Nowakowski AJ, Thompson ME, Donnelly MA, & Todd BD. Amphibian sensitivity to habitat modification is associated with population trends and species traits. Glob Ecol Biogeogr. 2017;26(6), 700–712.

    Google Scholar 

  173. Dallalio EA, Brand AB, Grant EHC. Climate-mediated competition in a high-elevation salamander community. J Herpetol. 2017;51(2):190–6.

    Google Scholar 

Download references

Acknowledgments

We thank M. Veiman for comments of the manuscript and J. James for valuable aural input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Justin Nowakowski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Effects of Landscape Structure on Conservation of Species and Biodiversity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowakowski, A.J., Frishkoff, L.O., Agha, M. et al. Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology. Curr Landscape Ecol Rep 3, 57–72 (2018). https://doi.org/10.1007/s40823-018-0034-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40823-018-0034-8

Keywords

Navigation