A Reliable Study of New Nonlinear Equation: Two-Mode Kuramoto–Sivashinsky

  • H. M. Jaradat
  • Marwan Alquran
  • Muhammed I. Syam
Original Paper


In this letter, we use the sense made by Korsunsky (Phys Lett A 185:174–176, 1994 ) to establish a new nonlinear equation called the two-mode Kuramoto–Sivashinsky (TMKS). A finite series in terms of the Tanh function is proposed to be a candidate solution to this new model. Also, we study possible solutions of TMKS by means of the modified simplified bilinear method where a new Cole-Hopf transformation is considered. The new model describes the propagation of two different wave modes simultaneously.


Two-mode Kuramoto–Sivashinsky Solitons Tanh-Expansion method Simplified Bilinear method 

Mathematics Subject Classification

35C08 74J35 


  1. 1.
    Korsunsky, S.V.: Soliton solutions for a second-order KdV equation. Phys. Lett. A 185, 174–176 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Xiao, Z.J., Tian, B., Zhen, H.L., Chai, J., Wu, X.Y.: Multi-soliton solutions and Bucklund transformation for a two-mode KdV equation in a fluid. Waves Random Complex Media. 31(6), 1–4 (2016)zbMATHGoogle Scholar
  3. 3.
    Lee, C.T., Liu, J.L.: A Hamiltonian model and soliton phenomenon for a two-mode KdV equation, rocky mountain. J. Math. 41(4), 1273–1289 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Lee, C.C., Lee, C.T., Liu, J.L., Huang, W.Y.: Quasi-solitons of the two-mode Korteweg-de Vries equation. Eur. Phys. J. Appl. Phys. 52, 11–301 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, C.T., Lee, C.C.: On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system. Waves Random Complex Media 23, 56–76 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhu, Z., Huang, H.C., Xue, W.M.: Solitary wave solutions having two wave modes of KdV-type and KdV-burgers-type, Chinese. J. Phys. 35(6), 633–639 (1997)MathSciNetGoogle Scholar
  7. 7.
    Hong, W.P., Jung, Y.D.: New non-traveling solitary wave solutions for a second-order Korteweg-de Vries equation. Z. Naturforsch. 54a, 375–378 (1999)Google Scholar
  8. 8.
    Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Suppl. Prog. Theor. Phys. 64, 346–367 (1978)CrossRefGoogle Scholar
  9. 9.
    Sirashinsky, G.I.: On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39, 67–82 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wazwaz, A.M.: A variety of distinct kinds of multiple soliton solutions for a (3+1)-dimensional nonlinear evolution equation. Math. Meth. Appl. Sci. 36(3), 349–357 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Maliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Alquran, M., Al-khaled, K.: Mathematical methods for a reliable treatment of the (2+1)-dimensional Zoomeron equation. Math. Sci. 6(12), 11 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Alquran, M., Al-Khaled, K.: The tanh and sine-cosine methods for higher order equations of Korteweg-de Vries type. Phys. Scr. 84(025010), 4 (2011)zbMATHGoogle Scholar
  14. 14.
    Alquran, M., Al-Khaled, K.: Sinc and solitary wave solutions to the generalized BenjaminBona-Mahony-Burgers equations. Phys. Scr. 83(065010), 6 (2011)Google Scholar
  15. 15.
    Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wazwaz, A.M.: Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers’ type equations. Commun. Nonlinear Sci. Numer. Simul. 14, 2962–2970 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wazwaz, A.M.: Kinks and travelling wave solutions for Burgers-like equations. Appl. Math. Lett. 38, 174–179 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hirota, R.: Exact N-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jaradat, H.M., Al-Shara’, S., Awawdeh, F., Alquran, M.: Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions. Phys. Scr. 85, 1 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jaradat, H.M., Awawdeh, F., Al-Shara’, S., Alquran, M., Momani, S.: Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media, Romanian. J. Phys. 60(3–4), 324–343 (2015)Google Scholar
  22. 22.
    Awawdeh, F., Jaradat, H.M., Al-Shara’, S.: Applications of a simplified bilinear method to ion-acoustic solitary waves in plasma. Eur. Phys. J. D 66, 1–8 (2012)CrossRefGoogle Scholar
  23. 23.
    Awawdeh, F., Al-Shara’, S., Jaradat, H.M., Alomari, A.K., Alshorman, R.: Symbolic computation on soliton solutions for variable coefficient quantum Zakharov-Kuznetsov equation in magnetized dense plasmas. Int. J. Nonlinear Sci. Numer. Simul. 15(1), 35–45 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wazwaz, A.M.: Multiple-soliton solutions for the Boussinesq equation. Appl. Math. Comput. 192, 479–486 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jaradat, H.M.: New solitary wave and multiple soliton solutions for the time-space fractional boussinesq equation. Ital. J. Pure Appl. Math. 36, 367–376 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Alsayyed, O., Jaradat, H.M., Jaradat, M.M.M., Mustafa, Zead, Shatat, Feras: Multi-soliton solutions of the BBM equation arisen in shallow water. J. Nonlinear Sci. Appl. 9(4), 1807–1814 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jaradat, H.M.: Dynamic behavior of traveling wave solutions for a class for the time-space coupled fractional kdV system with time-dependent coefficients. Ital. J. Pure Appl. Math. 36, 945–958 (2016)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Alquran, M., Jaradat, H.M., Al-Shara’, S., Awawdeh, F.: A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients. Int. J. Nonlinear Sci. Numer. Simul. 16, 259–269 (2015)MathSciNetGoogle Scholar
  29. 29.
    Jaradat, H.M., Al-Shara’, S., Alquran, M., Momani, S., Jaradat, M.M.M., Mustafa, Zead, Alsayyed, O., Alquran, Marwan, Abohassan, Khedr M., Momani, S.: New solitary wave and multiple soliton solutions for the time-space coupled fractional mKdV system with time-dependent coefficients. J. Comput. Theor. Nanosci. 13(12), 9082–9089 (2016)CrossRefGoogle Scholar
  30. 30.
    Jaradat, H.M.: Dynamic behavior of traveling wave solutions for new couplings of the burgers equations with time-dependent variable coefficients. Adv. Differ. Equ. 2017, 167 (2017).

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  • H. M. Jaradat
    • 1
  • Marwan Alquran
    • 2
  • Muhammed I. Syam
    • 3
  1. 1.Department of MathematicsAl al-Bayt UniversityMafraqJordan
  2. 2.Department of Mathematics and StatisticsJordan University of Science and TechnologyIrbidJordan
  3. 3.Department of Mathematical SciencesUAE UniversityAl-AinUnited Arab Emirates

Personalised recommendations