Hot Corrosion Behaviour of CNT Reinforced Zirconium Yttrium Coatings in Molten Salt Environment

Abstract

The present work investigates the hot corrosion behaviour of CNT-reinforced zirconium yttrium coatings on T-91 boiler tube steel in a molten salt (Na2SO4–60 wt%V2O5) environment at 600 °C under cyclic conditions. Air plasma spray technique was used for the development of coatings. The un-coated coated and all the as-coated specimens were subjected to hot corrosion exposure in a silicon tube furnace at 600 °C for 50 cycles. The corrosion behaviour was examined through mass gain measurements after the completion of each cycle. The corroded product was examined by XRD and SEM with EDAX analysis. After critical examination it was concluded that the oxide scale of Fe2O3 was formed on un-coated specimen as a result of it suffered from thermal spallation. All the as-coated specimens show the lower mass gains with good adhesiveness of oxide scale with the substrate steel. The CNT-reinforced zirconium yttrium coatings was found to provide better corrosion resistance in the hot corrosion environment due to uniform dispersion of CNT in the coatings matrix and the formation of protective zirconium oxide in the scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Duarte CA, Espejo E, Martinez JC (2017) Failure analysis of the wall tubes of a water-tube boiler. Eng Fail Anal 79(January):704–713. https://doi.org/10.1016/j.engfailanal.2017.05.032

    CAS  Article  Google Scholar 

  2. 2.

    Alia FF et al (2017) High temperature oxidation in boiler environment of chromized steel. IOP Conf Ser. https://doi.org/10.1088/1757-899X/257/1/012086

    Article  Google Scholar 

  3. 3.

    Kumar D, Pandey KN, Das DK (2016) Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application. Int J Miner Metall Mater 23(8):934–942. https://doi.org/10.1007/s12613-016-1309-x

    CAS  Article  Google Scholar 

  4. 4.

    Ding Q, Tang X, Yang Z (2017) Failure analysis on abnormal corrosion of economizer tubes in a waste heat boiler. Eng Fail Anal 73:129–138. https://doi.org/10.1016/j.engfailanal.2016.12.011

    CAS  Article  Google Scholar 

  5. 5.

    Keyvani A, Bahamirian M (2016) Oxidation resistance of Al2O3 -nanostructured/CSZ composite compared to conventional CSZ and YSZ thermal barrier coatings. Mater Res Express 3(10):1–12

    Article  Google Scholar 

  6. 6.

    Loghman-estarki MR, Nejati M, Edris H, Shoja R (2016) Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings in the presence of molten sulfate and vanadate salt Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured therma. J Eur Ceram Soc 35(2):693–702. https://doi.org/10.1016/j.jeurceramsoc.2014.08.029

    CAS  Article  Google Scholar 

  7. 7.

    Goyal K, Goyal R (2019) Improving hot corrosion resistance of Cr3C2–20NiCr coatings with CNT reinforcements. Surf Eng. https://doi.org/10.1080/02670844.2019.1662645

    Article  Google Scholar 

  8. 8.

    Jiang C, Xing Y, Zhang F, Hao J (2012) Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying. Int J Miner Metall Mater 19(7):657–662. https://doi.org/10.1007/s12613-012-0609-z

    CAS  Article  Google Scholar 

  9. 9.

    Saladi S, Menghani J, Prakash S (2014) Hot corrosion behaviour of detonation-gun sprayed Cr3C2–NiCr coating on Inconel-718 in molten salt environment at 900 °C. Trans Indian Inst Metals 67:623–627. https://doi.org/10.1007/s12666-014-0383-x

    CAS  Article  Google Scholar 

  10. 10.

    Huang L, Meng H, Liang L, Li S, Shi J (2015) Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings. Int J Miner Metall Mater 22(10):1050–1059. https://doi.org/10.1007/s12613-015-1167-y

    CAS  Article  Google Scholar 

  11. 11.

    Pal V, Sidhu S, Goyal K (2017) Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant. J Austral Ceram Soc. https://doi.org/10.1007/s41779-017-0107-x

    Article  Google Scholar 

  12. 12.

    Bengtsson P, Johannesson T (1995) Characterization of microstructural defects in plasma-sprayed thermal barrier coatings. J Therm Spray Technol 4(3):245–251. https://doi.org/10.1007/BF02646967

    CAS  Article  Google Scholar 

  13. 13.

    Fargas G, Casellas D, Llanes L, Anglada M (2003) Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks. J Eur Ceram Soc 23(1):107–114. https://doi.org/10.1016/S0955-2219(02)00065-1

    CAS  Article  Google Scholar 

  14. 14.

    Saremi M, Afrasiabi A, Kobayashi A (2007) Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coating on Ni superalloy. Trans JWRI. 36(1):41–45

    CAS  Google Scholar 

  15. 15.

    Tianshun D, Xiukai Z, Guolu L, Li L, Ran W (2018) Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting. Mater Res Express 5(2):026411

    Article  Google Scholar 

  16. 16.

    Fukanuma H (1994) A porosity formation and flattening model of an impinging molten particle in thermal spray coatings. J Thermal Spray Technol 3(1):33–44

    Article  Google Scholar 

  17. 17.

    Chatha SS, Sidhu HS, Sidhu BS (2012) Characterisation and corrosion-erosion behaviour of carbide based thermal spray coatings. J Miner Mater Charact Eng 11(06):569–586. https://doi.org/10.4236/jmmce.2012.116041

    Article  Google Scholar 

  18. 18.

    Kamal S, Jayaganthan R, Prakash S (2009) Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2-25%NiCr coatings on nickel- and iron-based superalloys. Surf Coatings Technol 203(8):1004–1013. https://doi.org/10.1016/j.surfcoat.2008.09.031

    CAS  Article  Google Scholar 

  19. 19.

    Sapundjiev D, Van Dyck S, Bogaerts W (2006) Liquid metal corrosion of T91 and A316L materials in Pb–Bi eutectic at temperatures 400–600 °C. Corrosion Sci 48(3):577–594. https://doi.org/10.1016/j.corsci.2005.04.001

    CAS  Article  Google Scholar 

  20. 20.

    Goyal R, Sidhu BS, Chawla V (2018) Oxidation behaviour of plasma sprayed carbon nanotubes-alumina coated ASME-SA213-T291 boiler tube steel. J Mater Metall Eng 7(3):1–15

    Google Scholar 

  21. 21.

    Goyal K, Singh H, Bhatia R (2019) Hot-corrosion behavior of Cr2O3-CNT-coated ASTM-SA213-T22 steel in a molten salt environment at 700 °C. Int J Miner Metall Mater 26(3):337–344

    CAS  Article  Google Scholar 

  22. 22.

    Singh S, Goyal K, Goyal R (2016) Performance of Cr3C2-25 (Ni–20Cr) and Ni–20Cr coatings on T22 boiler tube steel in simulated boiler environment. J Thin Films Coat Sci Technol Appl 3(2):19–26

    CAS  Google Scholar 

  23. 23.

    Goyal K, Singh H, Bhatia R (2019) Hot-corrosion behavior of Cr2O3-CNT-coated ASTM-SA213-T22 steel in a molten salt environment at 700°C. Int J Miner Metall Mater 26(3):337–344. https://doi.org/10.1007/s12613-019-1742-8

    CAS  Article  Google Scholar 

  24. 24.

    Keshri AK, Agarwal A (2011) Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: a comparison between experiments and simulation. Surf Coatings Technol 206(2–3):338–347. https://doi.org/10.1016/j.surfcoat.2011.07.025

    CAS  Article  Google Scholar 

  25. 25.

    Sidhu VPS, Goyal K, Goyal R (2017) Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant. J Aust Ceram Soc 53(2):925–932. https://doi.org/10.1007/s41779-017-0107-x

    CAS  Article  Google Scholar 

  26. 26.

    Thakare JG, Pandey C, Mulik RS, Mahapatra MM (2018) Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram Int 44(6):6980–6989

    CAS  Article  Google Scholar 

  27. 27.

    Prasanna PA, Sreenivasulu PSV (2018) High-temperature corrosion behaviour of HVOF sprayed Cr3C2–25NiCr coated on alloy X22CrMoV12–1 at 600 °C. J Therm Spray Eng 1(1):7–12

    Google Scholar 

  28. 28.

    Sharma V, Kumar S, Kumar M, Deepak D (2019) High temperature oxidation performance of Ni-Cr-Ti and Ni-5Al coatings. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.11.048

    Article  Google Scholar 

  29. 29.

    Gond D et al (2010) Oxidation studies of T-91 and T-22 boiler steels in air at 900 °C. J Miner Mater Charac Eng 9(8):749–761

    Google Scholar 

  30. 30.

    Meng X, Tan X, Meng B, Yang N, Ma ZF (2008) Preparation and characterization of yttria-stabilized zirconia nanotubes. Mater Chem Phys 111(2–3):275–278. https://doi.org/10.1016/j.matchemphys.2008.04.017

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest of any sort.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Bhatia, R. & Singh, H. Hot Corrosion Behaviour of CNT Reinforced Zirconium Yttrium Coatings in Molten Salt Environment. J Bio Tribo Corros 6, 81 (2020). https://doi.org/10.1007/s40735-020-00378-3

Download citation

Keywords

  • Hot corrosion
  • Porosity
  • Plasma spray
  • CNT
  • T-91 steel