Skip to main content

Advertisement

Log in

The Response of Subtropical Highs to Climate Change

  • Climate Change and Atmospheric Circulation (R Chadwick, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Subtropical highs are an important component of the climate system with clear implications on the local climate regimes of the subtropical regions. In a climate change perspective, understanding and predicting subtropical highs and related climate is crucial to local societies for climate mitigation and adaptation strategies. We review the current understanding of the subtropical highs in the framework of climate change.

Recent Findings

Projected changes of subtropical highs are not uniform. Intensification, weakening, and shifts may largely differ in the two hemispheres but may also change across different ocean basins. For some regions, large inter-model spread representation of subtropical highs and related dynamics is largely responsible for the uncertainties in the projections. The understanding and evaluation of the projected changes may also depend on the metrics considered and may require investigations separating thermodynamical and dynamical processes.

Summary

The dynamics of subtropical highs has a well-established theoretical background but the understanding of its variability and change is still affected by large uncertainties. Climate model systematic errors, low-frequency chaotic variability, coupled ocean-atmosphere processes, and sensitivity to climate forcing are all sources of uncertainty that reduce the confidence in atmospheric circulation aspects of climate change, including the subtropical highs. Compensating signals, coming from a tug-of-war between components associated with direct carbon dioxide radiative forcing and indirect sea surface temperature warming, impose limits that must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saha K. Monsoon over Australia (region – IV). In: Tropical circulation systems and monsoons. Berlin Heidelberg: Springer-Verlag; 2010. https://doi.org/10.1007/978-3-642-03373-5_7.

    Chapter  Google Scholar 

  2. Miyasaka T, Nakamura H. Structure and mechanisms of the southern hemisphere summertime subtropical anticyclones. J Clim. 2010;23:2115–30.

    Article  Google Scholar 

  3. Gamble DW, Parnell DB, Curtis S. Spatial variability of the Caribbean mid-summer drought and relation to North Atlantic high circulation. Int J Climatol. 2008;28:343–50.

    Article  Google Scholar 

  4. Li W, Li L, Fu R, Deng Y, Wang H. Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Clim. 2011;24:1499–506.

    Article  Google Scholar 

  5. Luchetti NT, Nieto Ferreira R, Rickenbach TM, Nissenbaum MR, McAuliffe JD. Influence of the North Atlantic subtropical high on wet and dry sea-breeze events in North Carolina, United States. Investigaciones Geograficas. 2017;68:9–25. https://doi.org/10.14198/INGEO2017.68.01.

    Article  Google Scholar 

  6. Zhou T, Gong D, Li J, Li B. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon - recent progress and state of affairs. Meteorol Z. 2009a;18(4):455–67.

    Article  Google Scholar 

  7. Behera SK, Yamagata T. Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett. 2001;28:327–30.

    Article  Google Scholar 

  8. Manatsa D, Morioka Y, Behera SK, Matarira CH, Yamagata T. Impact of Mascarene high variability on the east African “short rains”. Clim Dyn. 2014;42(5–6):1259–74.

    Article  Google Scholar 

  9. Doyle ME, Barros VR. Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim. 2002;15(23):3394–410.

    Article  Google Scholar 

  10. Reboita MS, Gan MA, Da Rocha RP, Ambrizzi T. Precipitation regimes in South America: a bibliographic review. J Meteor. 2010;25:185–204. Available in Portuguese

    Google Scholar 

  11. Gilliland JM, Keim BD. Position of South Atlantic anticyclone and its impact on surface conditions across Brazil. J Appl Meteor Clim doi. 2018;57:535–53. https://doi.org/10.1175/JAMC-D-17-0178.1.

    Article  Google Scholar 

  12. Sun S, Ying M. Subtropical high anomalies over the western pacific and its relations to the Asian monsoon and SST anomaly. Adv Atmos Sci. 1999;16:559–68.

    Article  Google Scholar 

  13. Ding YH, Chan JCL. The East Asian summer monsoon: an overview. Meteor Atmos Phys. 2005;89:117–42.

    Article  Google Scholar 

  14. Bannister AJ, Boothe MA, Carr LE, Elsberry RL (1997) Southern hemisphere application of the systematic approach to tropical cyclone track forecasting: part I: environmental structure characteristics. Tech Rep NPS-MR-98-001 96 pp Naval Postgraduate School, Monterey, CA.

  15. Wu L, Wang B, Geng S. Growing typhoon influence on East Asia. Geophys Res Lett. 2005;32:L18703.

    Google Scholar 

  16. Stowasser M, Wang Y, Hamilton K. Tropical cyclone changes in the western North Pacific in a global warming scenario. J Clim. 2007;20:2378–96.

    Article  Google Scholar 

  17. Klein SA, Hartmann DL. The seasonal cycle of low stratiform clouds. J Clim. 1993;6:1587–606.

    Article  Google Scholar 

  18. Rahn DA, Garreaud R. Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—part 1: mean structure and diurnal cycle. Atmos Chem Phys. 2010;10:4491–506.

    Article  CAS  Google Scholar 

  19. Wei W, Wenhong Li, Yi Deng, Song Yang, Jonathan H. Jiang, Lei Huang, W. Timothy Liu (2017) Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer. Clim Dyn DOI https://doi.org/10.1007/s00382-017-3750-6, 50, 2457, 2469.

    Article  Google Scholar 

  20. Rodwell MJ, Hoskins BJ. Subtropical anticyclones and summer monsoons. J Clim. 2001;14:3192–211.

    Article  Google Scholar 

  21. Li L, Li W, Kushnir Y. Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Clim Dyn. 2012a;39:1401–12. https://doi.org/10.1007/s00382-011-1214-y.

    Article  Google Scholar 

  22. Sun X, Cook KH, Vizy EK. The South Atlantic subtropical high: climatology and interannual variability. J Clim. 2017;30:3279–96.

    Article  Google Scholar 

  23. Cai W, Cowan T, Thatcher M. Rainfall reductions over southern hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci Rep. 2012;2:702. https://doi.org/10.1038/srep00702.

    Article  CAS  Google Scholar 

  24. Scheff J, Frierson D. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J Clim. 2012;25:4330–47. https://doi.org/10.1175/JCLI-D-11-00393.1.

    Article  Google Scholar 

  25. Hu Y, Zhou C, Liu J. Observational evidence for poleward expansion of the Hadley circulation. Adv Atm Sci. 2011;28:33–44.

    Article  CAS  Google Scholar 

  26. Nguyen H, Hendon HH, Lim EP, Boschat G, Maloney E, Timbal B. Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Clim Dyn. 2018;50:129–42. https://doi.org/10.1007/s00832-017-3592-2.

    Article  Google Scholar 

  27. Seager R, Murthugudde R, Naik N, Clement A, Gordon N, Miller J. Air-sea interaction and the seasonal cycle of the subtropical anticyclones. J Clim. 2003;16:1948–66.

    Article  Google Scholar 

  28. Rodwell MJ, Hoskins BJ. Monsoons and the dynamics of deserts. Quart J Roy Meteor Soc. 1996;122:1385–404.

    Article  Google Scholar 

  29. Cherchi A, Annamalai H, Masina S, Navarra A. South Asian summer monsoon and the eastern Mediterranean climate: the monsoon-desert mechanism in CMIP5 simulations. J Clim. 2014;27:6877–903. https://doi.org/10.1175/JCLI-D-13-00530.1.

    Article  Google Scholar 

  30. Tyrlis E, Lelieveld J, Steil B. The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn. 2013;40:1103–23. https://doi.org/10.1007/s00382-012-1258-4.

    Article  Google Scholar 

  31. Shaffrey LC, Hoskins BJ, Lu R. The relationship between the North American summer monsoon, the Rocky Mountains and the North Pacific subtropical anticyclone in HadAM3. Quart J Roy Meteor Soc. 2002;128:2607–22.

    Article  Google Scholar 

  32. Liu Y, Wu G, Ren R. Relationship between the subtropical anticyclone and diabatic heating. J Clim. 2004;17:682–98.

    Article  Google Scholar 

  33. Held IM, Hou AY. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atm Sci. 1980;37:515–33.

    Article  Google Scholar 

  34. Held IM (2000) The general circulation of the atmosphere. Woods Hole Oceanographic Institute Geophysical Fluid Dyamics Program, Woods Hole, Mass (available at https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/woods_hole.pdf).

  35. Lee SK, Mechoso CR, Wang C, Neelin JD. Interhemispheric influence of the northern summer monsoons on southern subtropical anticyclones. J Clim. 2013;26:10193–204. https://doi.org/10.1175/JCLI-D-13-00106.1.

    Article  Google Scholar 

  36. Richter I, Mechoso CR, Robertson AW. What determines the position and intensity of the South Atlantic anticyclone in austral winter? - an AGCM study. J Clim. 2008;21:214–29. https://doi.org/10.1175/2007JCLI1802.1.

    Article  Google Scholar 

  37. Wang C, Lee S-K, Mechoso CR. Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J Clim. 2010;23:404–18.

    Article  Google Scholar 

  38. Hastenrath S. Climate dynamics of the tropics: Kluwer; 1991. p. 488.

    Chapter  Google Scholar 

  39. Tao SY, Chen LX. A review of recent research on the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN, editors. Review of monsoon meteorology. London: Oxford Univ Press; 1987. p. 353.

    Google Scholar 

  40. Du Y, Yang I, Xie SP. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Nino. J Clim. 2011;24:315–22. https://doi.org/10.1175/2010JCLI3890.1.

    Article  Google Scholar 

  41. Kosaka Y, Chowdary JS, Xie SP, Min YM, Lee JY. Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J Clim. 2012;25:7574–89.

    Article  Google Scholar 

  42. Wang B, Xiang BQ, Lee JY. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Nat Academy Sci. 2013;110:2718–22.

    Article  CAS  Google Scholar 

  43. Zhang I, Zhou T. Drought over East Asia: a review. J Clim. 2015;28:3375–99. https://doi.org/10.1175/JCLI-D-14-00259.1.

    Article  Google Scholar 

  44. Li T, Wang B, Wu B, Zhou T, Chang CP, Zhang R. Theories on formation of an anomalous anticyclone in western North Pacific during El Nino: a review. J Meteor Res. 2017;31:987–1006. https://doi.org/10.1007/s13351-017-7147-6.

    Article  Google Scholar 

  45. Nagata R, Mikami T. Changes in the relationship between summer rainfall over Japan and the North Pacific subtropical high, 1901-2000. Int J Climatol. 2017;37:3291–6.

    Article  Google Scholar 

  46. Dong X, Li R, Fan F. Comparison of the two modes of the Western Pacific subtropical high between early and late summer. Atm Sci Lett. 2017;18:153–60. https://doi.org/10.1002/asl.737.

    Article  Google Scholar 

  47. Qian W, Shi J. Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int J Climatol. 2017;37:3018–35. https://doi.org/10.1002/joc.4897.

    Article  Google Scholar 

  48. He C, Zhou T. The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Clim Dyn. 2014;43:2455–69. https://doi.org/10.1007/s00382-014-2068-x.

    Article  Google Scholar 

  49. Duan A, Sun R, He J. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: a land-air-sea interaction perspective. Adv Atm Sci. 2017;34:157–68.

    Article  Google Scholar 

  50. He C, Zhou T. Decadal change of the connection between summer western North Pacific subtropical high and tropical SST in the early 1990s. Atm Sci Lett. 2015a;16:253–9.

    Article  Google Scholar 

  51. Paek H, Yu JY, Zheng F, Lu MM. Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer. Clim Dyn. 2016; https://doi.org/10.1007/s00382-016-3288-z.

  52. Chen X, Zhou T. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat wave over the Yangtze River valley during 1979-2014. Clim Dyn. 2017; https://doi.org/10.1007/s00382-017-3871-y.

  53. He C, Zhou T, Lin A, Wu B, Gu D, Li C, et al. Enhanced or weakened western North Pacific subtropical high under global warming? Sci Rep. 2015b;5:16771. https://doi.org/10.1038/srep16771.

    Article  CAS  Google Scholar 

  54. Matsumura S, Horinouchi T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high. Sci Rep. 2016;6:37765. https://doi.org/10.1038/srep37765.

    Article  CAS  Google Scholar 

  55. Lyu K, Yu JY, Paek H. The influences of the Atlantic multidecadal oscillation on the mean strength of the North Pacific subtropical high during boreal winter. J Cli. 2017;30:411–24. https://doi.org/10.1175/JCLI-D-16-0525.1.

    Article  Google Scholar 

  56. Hu Z, Yang S, Wu R. Long-term climate variations in China and global warming signals. J Geophys Res. 2003;108:4614. https://doi.org/10.1029/2003JD003651.

    Article  Google Scholar 

  57. Yu R, Zhou T. Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. J Clim. 2007;20:5344–55.

    Article  Google Scholar 

  58. Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim. 2009b;22:2199–215.

    Article  Google Scholar 

  59. Katz RW, Parlange MB, Tebaldi C. Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern US. Clim Ch. 2003;60:189–21.

    Article  Google Scholar 

  60. Nicholson SE. The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor doi. 2013;2013:1–32. https://doi.org/10.1155/2013/453521.

    Article  Google Scholar 

  61. Davis RE, Hayden BP, Gay DA, Phillips WL, Jones GV. The North Atlantic subtropical anticyclone. J Clim. 1997;10:728–44.

    Article  Google Scholar 

  62. Hasanean HM. Variability of the North Atlantic subtropical high and associations with tropical sea surface temperature. Int J Climatol. 2004;24:945–57. https://doi.org/10.1002/joc.1042.

    Article  Google Scholar 

  63. Diem JE. Influences of the Bermuda high and atmospheric moistening on changes in summer rainfall in the Atlanta, Georgia region, USA. Int J Climatol. 2013;33:160–72. https://doi.org/10.1002/joc.3421.

    Article  Google Scholar 

  64. Bowerman AR and co-authors (2017) An influence of extreme southern hemisphere cold surges on the North Atlantic subtropical high through a shallow atmospheric circulation. J Geophys Res Atm 122: 10,135 - 10,148.

  65. Walker GT, Bliss EW. World weather. V Mem Roy Meteor Soc. 1932;4:53–83.

    Google Scholar 

  66. Scaife AA, et al. Skillful long-range prediction of European and North American winters. Geophys Res Lett. 2014;41:2514–9. https://doi.org/10.1002/2014GL059637.

    Article  Google Scholar 

  67. Delworth TL, Zheng F, Vecchi GA, Yang X, Zhang L, Zhang R. The North Atlantic oscillation as a driver of rapid climate change in the northern hemisphere. Nat Geosci. 2016;9:509–12. https://doi.org/10.1038/ngeo2738.

    Article  CAS  Google Scholar 

  68. Machel H, Kapala A, Flohn EH. Behaviour of the centres of action above the Atlantic since 1881. Part I: characteristics of seasonal and interannual variability. Int J Climatol. 1998;18:1–22.

    Article  Google Scholar 

  69. Vizy EK, Cook KH, Sun X. Decadal change of the South Atlantic Ocean Angola-Benguela frontal zone since 1980. Clim Dyn. 2018; https://doi.org/10.1007/s00382-018-4077-7.

    Article  Google Scholar 

  70. Morioka, Y., Taguchi, B., & Behera, S. K. (2017). Eastward-propagating decadal temperature variability in the South Atlantic and Indian Oceans. Journal of Geophysical Research: Oceans.

  71. Morioka Y, Engelbrecht F, Behera SK. Potential sources of decadal climate variability over southern Africa. J Clim. 2015b;28(22):8695–709.

    Article  Google Scholar 

  72. Le Bars D, Viebahn JP, Dijkstra HA. A Southern Ocean mode of multidecadal variability. Geophys Res Lett. 2016;43(5):2102–10.

    Article  Google Scholar 

  73. Xue F and co-authors (2015) Recent advances in monsoon studies in China. Adv Atm Sci 32: 206–229 doi: https://doi.org/10.1007/s00376-014-0015-8.

    Article  Google Scholar 

  74. Allan RJ, Lindesay JA, Reason CJ. Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J Clim. 1995;8(7):1853–73.

    Article  Google Scholar 

  75. Reason CJC. Warm and cold events in the southeast Atlantic/southwest Indian Ocean region and potential impacts on circulation and rainfall over southern Africa. Met Atm Phys. 1998;69(1–2):49–65.

    Article  Google Scholar 

  76. Yamagami Y, Tozuka T. Interdecadal changes of the Indian Ocean subtropical dipole mode. Clim Dyn. 2015;44(11–12):3057–66.

    Article  Google Scholar 

  77. Tyson PD, Dyer TG, Mametse MN. Secular changes in south African rainfall: 1880 to 1972. Q J R Meteorol Soc. 1975;101(430):817–33.

    Article  Google Scholar 

  78. Malherbe J, Landman WA, Engelbrecht FA. The bi-decadal rainfall cycle, Southern Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa. Clim Dyn. 2014;42(11–12):3121–38.

    Article  Google Scholar 

  79. Reason CJC, Allan RJ, Lindesay JA. Evidence for the influence of remote forcing on interdecadal variability in the southern Indian Ocean. J Geophys Res Oceans. 1996;101(C5):11867–82.

    Article  Google Scholar 

  80. Choi J, Son SW, Lu J, Min SK. Further observational evidence of Hadley cell widening in the southern hemisphere. Geophys Res Lett. 2014;41:2590–7. https://doi.org/10.1002/2014GL059426.

    Article  Google Scholar 

  81. Lucas C, Nguyen H. Regional characteristics of tropical expansion and the role of climate variability. J Geophys Res Atm. 2015;120:6809–24. https://doi.org/10.1002/2015JD023130.

    Article  Google Scholar 

  82. He C, Wu B, Zou L, Zhou T. Responses of the summertime subtropical anticyclones to global warming. J Clim. 2017;30:6465–79.

    Article  Google Scholar 

  83. Kim Y-H, Min S-K, Son S-K, Choi J. Attribution of local Hadley cell widening in the southern hemisphere. Geophys Res Lett. 2017;44:1015–24. https://doi.org/10.1002/2016GL072353.

    Article  Google Scholar 

  84. Lu J, Vecchi GA, Reichler T. Expansion of the Hadley cell under global warming. Geophys Res Lett. 2007;34:L06805. https://doi.org/10.1029/2006GL028443.

    Article  Google Scholar 

  85. Tao L, Hu Y, Liu J. Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn. 2016;46:3337–50. https://doi.org/10.1007/s00382-015-2772-1.

    Article  Google Scholar 

  86. Vizy EK, Cook KH. Understanding long-term (1982–2013) multi-decadal change in the equatorial and subtropical South Atlantic climate. Clim Dyn. 2016;46:2087–113.

    Article  Google Scholar 

  87. Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull Am Meteor Soc. 2012;93:485–98. https://doi.org/10.1175/BAMS-D-11-00094.I.

    Article  Google Scholar 

  88. Min SK, Won SW. Multimodel attribution of the southern hemisphere Hadley cell widening: major role of ozone depletion. J Geophys Res Atm. 2013;118:3007–15.

    Article  CAS  Google Scholar 

  89. Waugh DW, Garfinkel CI, Polvani LM. Drivers of the recent tropical expansion in the southern hemisphere: changing SSTs or ozone depletion? J Clim. 2015;28:6581–6.

    Article  Google Scholar 

  90. Venegas SA, Mysak LA, Straub DN. Atmosphere–ocean coupled variability in the South Atlantic. J Clim. 1997;10(11):2904–20.

    Article  Google Scholar 

  91. Fauchereau N, Trzaska S, Richard Y, Roucou P, Camberlin P. Sea-surface temperature co-variability in the Southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the southern hemisphere. Int J Climatol. 2003;23(6):663–77.

    Article  Google Scholar 

  92. Wang F. Subtropical dipole mode in the southern hemisphere: a global view. Geophys Res Lett. 2010;37:L10702. https://doi.org/10.1029/2010GL042750.

    Article  Google Scholar 

  93. Morioka Y, Ratnam JV, Sasaki W, Masumoto Y. Generation mechanism of the South Pacific subtropical dipole. J Clim. 2013;26(16):6033–45.

    Article  Google Scholar 

  94. Suzuki R, Behera SK, Iizuka S, Yamagata T. Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophys Res: Oceans. 2004;109(C9)

  95. Morioka Y, Tozuka T, Yamagata T. Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Clim Dyn. 2010;35(6):1059–72.

    Article  Google Scholar 

  96. Colberg F, Reason CJC, Rodgers K. South Atlantic response to El Niño–Southern Oscillation induced climate variability in an ocean general circulation model. J Geophys Res: Oceans. 2004;109(C12)

  97. Morioka Y, Masson S, Terray P, Prodhomme C, Behera SK, Masumoto Y. Role of tropical SST variability on the formation of subtropical dipoles. J Clim. 2014;27(12):4486–507.

    Article  Google Scholar 

  98. Rodrigues RR, Campos EJ, Haarsma R. The impact of ENSO on the South Atlantic subtropical dipole mode. J Clim. 2015;28(7):2691–705.

    Article  Google Scholar 

  99. Reason CJC. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys Res Lett. 2001;28(11):2225–7.

    Article  Google Scholar 

  100. Morioka Y, Tozuka T, Yamagata T. On the growth and decay of the subtropical dipole mode in the South Atlantic. J Clim. 2011;24(21):5538–54.

    Article  Google Scholar 

  101. Yuan C, Tozuka T, Luo JJ, Yamagata T. Predictability of the subtropical dipole modes in a coupled ocean atmosphere model. Climate Dyn. 2014;42:1291–308. https://doi.org/10.1007/s00382-013-1704-1.

    Article  Google Scholar 

  102. Meehl GA and co-authors (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteor Soc 88: 1383–1394 doi: https://doi.org/10.1175/BAMS-88-9-1383.

    Article  Google Scholar 

  103. Li W, Li L, Ting M, Liu Y. Intensification of northern hemisphere subtropical highs in a warming climate. Nat Geosci. 2012b;5:830–4. https://doi.org/10.1038/NGEO1590.

    Article  CAS  Google Scholar 

  104. Li W, Li L, Ting M, Deng Y, Kushnir Y, Liu Y, et al. Intensification of the southern hemisphere summertime subtropical anticyclones in a warming climate. Geophys Res Lett. 2013;40:5959–64. https://doi.org/10.1002/2013GL058124.

    Article  Google Scholar 

  105. Liu Y, Li W, Zuo J, Hu ZZ. Simulation and projection of the western Pacific subtropical high in CMIP5 models. J Meteor Res. 2014;28:327–40.

    Article  Google Scholar 

  106. Ren Y, Zhou B, Song L, Xiao Y. Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection. Quart Int. 2017;440:64–70.

    Article  Google Scholar 

  107. He C, Zhou T, Wu B. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J Meteor Res. 2015a;29(4):562–75.

    Article  Google Scholar 

  108. He C, Lin A, Gu D, Li C, Zheng B, Wu B, et al. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor Appl Climatol. 2018;131:681–91. https://doi.org/10.1007/s00704-016-2001-9.

    Article  Google Scholar 

  109. He C, Zhou T. Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: the dominance of tropical Indian Ocean - Tropical Western Pacific SST Gradient. J Clim. 2015b;28:365–80.

    Article  Google Scholar 

  110. Folland CK, Sexton DMH, Karoly DJ, Johnson CE, Rowell DP, Parker DE. Influence of anthropogenic and oceanic forcing on recent climate change. Geophys Res Lett. 1998;25:353–6.

    Article  Google Scholar 

  111. Shaw TA, Voigt A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat Geosci. 2015;8:560–6. https://doi.org/10.1038/NGEO2449.

    Article  CAS  Google Scholar 

  112. Li X, Ting M, Li C, Henderson N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Clim. 2015;28:4107–25.

    Article  Google Scholar 

  113. Shaw TA, Voigt A. Land dominates the regional response to CO2 direct radiative forcing. Geophys Res Lett. 2016;43:11,383–91.

    Article  CAS  Google Scholar 

  114. Kelly P, Kravitz B, Lu J, Leung LR. Remote drying in the North Atlantic as a common response to precessional changes and CO2 increase over land. Geophys Res Lett. 2018;45:3615–24. https://doi.org/10.1002/2017GL076669.

    Article  Google Scholar 

  115. Alessandri A and co-authors (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4: 7211 doi: https://doi.org/10.1038/srep07211.

  116. Polade SD and co-authors (2017) Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci Rep 7: 10783 doi: https://doi.org/10.1038/s41598-017-11285-y.

  117. Choi J, et al. Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change. J Geophys Res Atm. 2016;121:795–806. https://doi.org/10.1002/2015JD023858.

    Article  Google Scholar 

  118. Eldridge DJ, Beecham G (2018) The impact of climate variability on land use and livelihoods in Australia’s rangelands. In: Gaur MK, Squires VR (eds) “Climate variability impacts on land use and livelihoods in drylands” Springer.

  119. Wandres M, Pattiaratchi C, Wijeratne EMS, Hetzel Y. The influence of the subtropical high-pressure ridge on the western Australian wave climate. J Coast Res. 2016;75:567–71. https://doi.org/10.2112/SI75-114.1.

    Article  Google Scholar 

  120. Cassola GE, et al. Decline in abundance and health state of an Atlantic subtropical gorgonian population. Mar Poll Bull. 2016;104:329–34.

    Article  Google Scholar 

  121. Xie JY and co-authors (2017) The 2014 summer coral bleaching event in subtropical Hong Kong. Mar Poll Bull doi: https://doi.org/10.1016/j.marpolbull.2017.03.061, 124, 653, 659.

  122. Tan Z, Lau KKL, Ng E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build Environ. 2017;120:93–109. https://doi.org/10.1016/j.buildenv.2017.05.017.

    Article  Google Scholar 

  123. Son JY, et al. The impact of temperature on mortality in a subtropical city: effects of cold, heat and heatwaves in Sao Paulo, Brazil. Int J Biometeorol. 2016;60:113–21.

    Article  Google Scholar 

  124. Freitas ACV, Frederiksen JS, O’Kane TJ, Ambrizzi T. Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate. Clim Dyn. 2017;49:521–45. https://doi.org/10.1007/s00382-016-3356-4.

    Article  Google Scholar 

  125. Freitas ACV, Ambrizzi T. Changes in the austral winter Hadley circulation and the impact on stationary Rossby waves propagation. Adv Meteorol. 2012;2012:1–15. https://doi.org/10.1155/2012/980816.

    Article  Google Scholar 

  126. Nguyen H, Evans A, Lucas C, Smith I, Timbal B. The Hadley circulation in re-analyses: climatology, variability, and change. J Clim. 2013;26:3357–76. https://doi.org/10.1175/JCLI-D-12-00224.1.

    Article  Google Scholar 

  127. Seager R, Naik N, Vecchi GA. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim. 2010;23:4651–68. https://doi.org/10.1175/2010JCLI3655.1.

    Article  Google Scholar 

  128. Lim EP, et al. The impact of the southern annular mode on future changes in southern hemisphere rainfall. Geophys Res Lett. 2016;43:7160–7. https://doi.org/10.1002/2016GL069453.

    Article  Google Scholar 

  129. Song F, Zhou T. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: skill dependence on Indian Ocean-western Pacific anticyclone teleconnections. J Clim. 2014a;27:1679–97.

    Article  Google Scholar 

  130. Richter I, Xie S-P, Wittenberg AT, Masumoto Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim Dyn. 2012;38:985–1001. https://doi.org/10.1007/s00382-011-1038-9.

    Article  Google Scholar 

  131. Cabos W, Sein DV, Pinto JG, et al. The South Atlantic anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Clim Dyn. 2017;48:4051–69. https://doi.org/10.1007/s00382-016-3319-9.

    Article  Google Scholar 

  132. Hendon HH, Lim EP, Arblaster J, Anderson DTL. Causes and predictability of the record wet spring over Australia in 2010. Clim Dyn. 2014;42:1155–74. https://doi.org/10.1007/s00382-013-1700-5.

    Article  Google Scholar 

  133. Nguyen H, et al. Expansion of the southern hemisphere Hadley cell in response to greenhouse forcing. J Clim. 2015;28:8067–77.

    Article  Google Scholar 

  134. Teissereng de Bort L (1883) Etude sur l’hiver de 1879–80 et recherches sur la position des centres d’action de l’atmosphere dans les hivers anormaux. Bureau Central Meteor. de la France, Annales, 1881, 4, 17–62.

  135. Stewart HJ. Periodic properties of semi-permanent atmospheric pressure systems. Q Appl Math. 1943;1:276–7.

    Article  Google Scholar 

  136. Rubin MJ, van Loon H. Aspects of the circulation of the southern hemisphere. J Meteor. 1954;11:68–76.

    Article  Google Scholar 

  137. Chen PC, Hoerling MP, Dole RM. The origin of the subtropical anticyclones. J Atmos Sci. 2001;58:1827–35.

    Article  Google Scholar 

  138. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, et al. The ERA-interim re-analysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc. 2011;137:553–97.

    Article  Google Scholar 

  139. Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys Res Lett. 2015;42:9433–9.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the two anonymous reviewers whose comments helped in improving the shape and content of the manuscript. A special thank is due to Dr. X Chen for the help in redrawing Fig. 1 using CMIP5 model results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Cherchi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Climate Change and Atmospheric Circulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherchi, A., Ambrizzi, T., Behera, S. et al. The Response of Subtropical Highs to Climate Change. Curr Clim Change Rep 4, 371–382 (2018). https://doi.org/10.1007/s40641-018-0114-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-018-0114-1

Keywords

Navigation