Moosmüller H, Chakrabarty RK, Arnott WP. Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat Transf. 2009;110(11):844–78. https://doi.org/10.1016/j.jqsrt.2009.02.035.
CAS
Article
Google Scholar
Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos. 2013;118(11):5380–552. https://doi.org/10.1002/jgrd.50171.
CAS
Article
Google Scholar
Claquin T, Schulz M, Balkanski YJ. Modeling the mineralogy of atmospheric dust sources. J Geophys Res Atmos. 1999;104(D18):22243–56. https://doi.org/10.1029/1999JD900416.
CAS
Article
Google Scholar
Sokolik IN, Toon OB. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res Atmos. 1999;104(D8):9423–44. https://doi.org/10.1029/1998JD200048.
CAS
Article
Google Scholar
Andreae MO, Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys. 2006;6(10):3131–48. https://doi.org/10.5194/acp-6-3131-2006.
CAS
Article
Google Scholar
Kirchstetter TW, Novakov T, Hobbs PV. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res Atmos. 2004;109(D21). https://doi.org/10.1029/2004JD004999.
Bergstrom RW, Pilewskie P, Russell PB, Redemann J, Bond TC, Quinn PK, et al. Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys. 2007;7(23):5937–43. https://doi.org/10.5194/acp-7-5937-2007.
CAS
Article
Google Scholar
Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, et al. Recommendations for reporting “black carbon” measurements. Atmos Chem Phys. 2013;13(16):8365–79. https://doi.org/10.5194/acp-13-8365-2013.
CAS
Article
Google Scholar
Lack DA, Moosmüller H, McMeeking GR, Chakrabarty RK, Baumgardner D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal Bioanal Chem. 2014;406(1):99–122. https://doi.org/10.1007/s00216-013-7402-3.
CAS
Article
Google Scholar
Stier P, Seinfeld JH, Kinne S, Boucher O. Aerosol absorption and radiative forcing. Atmos Chem Phys. 2007;7(19):5237–61. https://doi.org/10.5194/acp-7-5237-2007.
CAS
Article
Google Scholar
Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys. 2010;10(15):7017–39. https://doi.org/10.5194/acp-10-7017-2010.
CAS
Article
Google Scholar
Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys. 2013;13(4):1853–77. https://doi.org/10.5194/acp-13-1853-2013.
CAS
Article
Google Scholar
Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, et al. The community earth system model: a framework for collaborative research. B Am Meteorol Soc. 2013;94(9):1339–60. https://doi.org/10.1175/BAMS-D-12-00121.1.
Article
Google Scholar
Forster PM, Richardson T, Maycock AC, Smith CJ, Samset BH, Myhre G, et al. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J Geophys Res Atmos. 2016. https://doi.org/10.1002/2016JD025320.
Samset BH, Myhre G, Forster PM, Hodnebrog Ø, Andrews T, Faluvegi G, et al. Fast and slow precipitation responses to individual climate forcers: a PDRMIP multimodel study. Geophys Res Lett. 2016;43(6):2782–91. https://doi.org/10.1002/2016GL068064.
Article
Google Scholar
Stjern CW, Samset BH, Myhre G, Forster PM, Hodnebrog Ø, Andrews T, et al. Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J Geophys Res Atmos. 2017;122:11,462–11,481. https://doi.org/10.1002/2017JD027326.
CAS
Article
Google Scholar
Bond TC, Bergstrom RW. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol. 2006;40(1):27–67. https://doi.org/10.1080/02786820500421521.
CAS
Article
Google Scholar
Chen Y, Bond TC. Light absorption by organic carbon from wood combustion. Atmos Chem Phys. 2010;10(4):1773–87. https://doi.org/10.5194/acp-10-1773-2010.
CAS
Article
Google Scholar
Sun H, Biedermann L, Bond TC. Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys Res Lett. 2007;34(17) https://doi.org/10.1029/2007gl029797.
Schuster GL, Dubovik O, Arola A. Remote sensing of soot carbon—part 1: distinguishing different absorbing aerosol species. Atmos Chem Phys. 2016;16(3):1565–85. https://doi.org/10.5194/acp-16-1565-2016.
CAS
Article
Google Scholar
Myhre G, Bellouin N, Berglen TF, Berntsen TK, Boucher O, Grini A, et al. Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus B. 2007;59(1):115–29. https://doi.org/10.1111/j.1600-0889.2006.00226.x.
Article
Google Scholar
Osborne SR, Johnson BT, Haywood JM, Baran AJ, Harrison MAJ, McConnell CL. Physical and optical properties of mineral dust aerosol during the dust and biomass-burning experiment. J Geophys Res. 2008;113(D23). https://doi.org/10.1029/2007jd009551.
Andersson A. A model for the spectral dependence of aerosol sunlight absorption. ACS Earth Space Chem. 2017;1(9):533–39. https://doi.org/10.1021/acsearthspacechem.7b00066.
CAS
Article
Google Scholar
Mikhailov EF, Vlasenko SS, Podgorny IA, Ramanathan V, Corrigan CE. Optical properties of soot–water drop agglomerates: an experimental study. J Geophys Res Atmos. 2006;111(D7). https://doi.org/10.1029/2005JD006389.
Schwarz JP, Gao RS, Spackman JR, Watts LA, Thomson DS, Fahey DW, et al. Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys Res Lett. 2008;35(13). https://doi.org/10.1029/2008GL033968.
Schuster GL, Dubovik O, Arola A, Eck TF, Holben BN. Remote sensing of soot carbon—part 2: understanding the absorption Ångström exponent. Atmos Chem Phys. 2016;16(3):1587–602. https://doi.org/10.5194/acp-16-1587-2016.
CAS
Article
Google Scholar
Liu C, Chul CE, Yin Y. The absorption Ångström exponent of black carbon: from numerical aspects. Atmos Chem Phys Discuss. 2017:1–30. https://doi.org/10.5194/acp-2017-836.
Neusüß C, Gnauk T, Plewka A, Herrmann H, Quinn PK. Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J Geophys Res Atmos. 2002;107(D19). https://doi.org/10.1029/2001JD000327
Schuster GL, Dubovik O, Holben BN, Clothiaux EE. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J Geophys Res Atmos. 2005;110(D10):n/a-n/a) https://doi.org/10.1029/2004JD004548.
Petzold A, Kopp C, Niessner R. The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmos Environ. 1997;31(5):661–72. https://doi.org/10.1016/s1352-2310(96)00245-2.
CAS
Article
Google Scholar
Cui X, Wang X, Yang L, Chen B, Chen J, Andersson A, et al. Radiative absorption enhancement from coatings on black carbon aerosols. Sci Total Environ. 2016;551:51–6. https://doi.org/10.1016/j.scitotenv.2016.02.026.
CAS
Article
Google Scholar
Ram K, Sarin MM. Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ Sci Technol. 2009;43(21):8233–9. https://doi.org/10.1021/es9011542.
CAS
Article
Google Scholar
Yttri KE, Lund Myhre C, Eckhardt S, Fiebig M, Dye C, Hirdman D, et al. Quantifying black carbon from biomass burning by means of levoglucosan—a one-year time series at the Arctic observatory Zeppelin. Atmos Chem Phys. 2014;14(12):6427–42. https://doi.org/10.5194/acp-14-6427-2014.
CAS
Article
Google Scholar
Zanatta M, Gysel M, Bukowiecki N, Müller T, Weingartner E, Areskoug H, et al. A European aerosol phenomenology-5: climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos Environ. 2016;145:346–64. https://doi.org/10.1016/j.atmosenv.2016.09.035.
CAS
Article
Google Scholar
Cappa CD, Onasch TB, Massoli P, Worsnop DR, Bates TS, Cross ES, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science. 2012;337(6098):1078–81. https://doi.org/10.1126/science.1223447.
CAS
Article
Google Scholar
Lack DA, Cappa CD, Cross ES, Massoli P, Ahern AT, Davidovits P, et al. Absorption enhancement of coated absorbing aerosols: validation of the photo-acoustic technique for measuring the enhancement. Aerosol Sci Technol. 2009;43(10):1006–12. https://doi.org/10.1080/02786820903117932.
CAS
Article
Google Scholar
Zhang R, Khalizov AF, Pagels J, Zhang D, Xue H, McMurry PH. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci. 2008;105(30):10291–6. https://doi.org/10.1073/pnas.0804860105.
Article
Google Scholar
Pokhrel RP, Beamesderfer ER, Wagner NL, Langridge JM, Lack DA, Jayarathne T, et al. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos Chem Phys. 2017;17(8):5063–78. https://doi.org/10.5194/acp-17-5063-2017.
CAS
Article
Google Scholar
Nakayama T, Ikeda Y, Sawada Y, Setoguchi Y, Ogawa S, Kawana K, et al. Properties of light-absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: contributions of brown carbon and lensing effect. J Geophys Res Atmos. 2014;119(22):12,721–712,739. https://doi.org/10.1002/2014JD021744.
Article
Google Scholar
Lan Z-J, Huang X-F, Yu K-Y, Sun T-L, Zeng L-W, Hu M. Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China. Atmos Environ. 2013;69:118–23. https://doi.org/10.1016/j.atmosenv.2012.12.009.
CAS
Article
Google Scholar
Peng J, Hu M, Guo S, Du Z, Zheng J, Shang D, et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci. 2016;113(16):4266–71. https://doi.org/10.1073/pnas.1602310113.
CAS
Article
Google Scholar
Boucher O, Balkanski Y, Hodnebrog Ø, Myhre CL, Myhre G, Quaas J, et al. Jury is still out on the radiative forcing by black carbon. Proc Natl Acad Sci. 2016;113(35):E5092–3. https://doi.org/10.1073/pnas.1607005113.
CAS
Article
Google Scholar
Fierce L, Bond TC, Bauer SE, Mena F, Riemer N. Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat Commun. 2016;7:12361. https://doi.org/10.1038/ncomms12361.
CAS
Article
Google Scholar
Liu D, Whitehead J, Alfarra MR, Reyes-Villegas E, Spracklen DV, Reddington CL, et al. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci. 2017;10(3):184–8. https://doi.org/10.1038/ngeo2901.
CAS
Article
Google Scholar
Schwarz JP, Samset BH, Perring AE, Spackman JR, Gao RS, Stier P, et al. Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys Res Lett. 2013;40(20):5542–7. https://doi.org/10.1002/2013GL057775.
CAS
Article
Google Scholar
Samset BH, Myhre G, Herber A, Kondo Y, Li SM, Moteki N, et al. Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos Chem Phys. 2014;14(22):12465–77. https://doi.org/10.5194/acp-14-12465-2014.
CAS
Article
Google Scholar
Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem Cycles. 2007;21(2). https://doi.org/10.1029/2006GB002840.
Cohen JB, Wang C. Estimating global black carbon emissions using a top-down Kalman Filter approach. J Geophys Res Atmos. 2014;119(1):307–23. https://doi.org/10.1002/2013JD019912.
CAS
Article
Google Scholar
Wang R, Balkanski Y, Boucher O, Ciais P, Schuster GL, Chevallier F, et al. Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. J Geophys Res Atmos. 2016;121(10):5948–71. https://doi.org/10.1002/2015JD024326.
Article
Google Scholar
Feng Y, Ramanathan V, Kotamarthi VR. Brown carbon: a significant atmospheric absorber of solar radiation? Atmos Chem Phys. 2013;13(17):8607–21. https://doi.org/10.5194/acp-13-8607-2013.
CAS
Article
Google Scholar
Lack DA, Langridge JM, Bahreini R, Cappa CD, Middlebrook AM, Schwarz JP. Brown carbon and internal mixing in biomass burning particles. Proc Natl Acad Sci. 2012;109(37):14802–7. https://doi.org/10.1073/pnas.1206575109.
Article
Google Scholar
Saleh R, Marks M, Heo J, Adams PJ, Donahue NM, Robinson AL. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J Geophys Res Atmos. 2015;120(19). https://doi.org/10.1002/2015JD023697.
Washenfelder RA, Attwood AR, Brock CA, Guo H, Xu L, Weber RJ, et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys Res Lett. 2015;42(2):653–64. https://doi.org/10.1002/2014GL062444.
CAS
Article
Google Scholar
Olson MR, Victoria Garcia M, Robinson MA, Van Rooy P, Dietenberger MA, Bergin M, et al. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions. J Geophys Res Atmos. 2015;120(13):6682–97. https://doi.org/10.1002/2014JD022970.
CAS
Article
Google Scholar
Lin G, Penner JE, Flanner MG, Sillman S, Xu L, Zhou C. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon. J Geophys Res Atmos. 2014;119(12):7453–76. https://doi.org/10.1002/2013jd021186.
Article
Google Scholar
Lin P, Liu J, Shilling JE, Kathmann SM, Laskin J, Laskin A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys Chem Chem Phys. 2015;17(36):23312–25. https://doi.org/10.1039/c5cp02563j.
CAS
Article
Google Scholar
Zhang X, Lin YH, Surratt JD, Weber RJ. Sources, composition and absorption Angstrom exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. Environ Sci Technol. 2013;47(8):3685–93. https://doi.org/10.1021/es305047b.
CAS
Article
Google Scholar
Hand JL, Malm WC, Laskin A, Day D, Lee T, Wang C, et al. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study. J Geophys Res. 2005;110(D21) https://doi.org/10.1029/2004jd005728.
Alexander DT, Crozier PA, Anderson JR. Brown carbon spheres in East Asian outflow and their optical properties. Science. 2008;321(5890):833–6. https://doi.org/10.1126/science.1155296.
CAS
Article
Google Scholar
Adachi K, Buseck PR. Atmospheric tar balls from biomass burning in Mexico. J Geophys Res. 2011;116(D5) https://doi.org/10.1029/2010jd015102.
Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J Geophys Res Atmos. 2003;108(D13). https://doi.org/10.1029/2002jd002291.
Semeniuk TA, Wise ME, Martin ST, Russell LM, Buseck PR. Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy. J Atmos Chem. 2006;56(3):259–73. https://doi.org/10.1007/s10874-006-9055-5.
CAS
Article
Google Scholar
Vignati E, Karl M, Krol M, Wilson J, Stier P, Cavalli F. Sources of uncertainties in modelling black carbon at the global scale. Atmos Chem Phys. 2010;10(6):2595–611. https://doi.org/10.5194/acp-10-2595-2010.
CAS
Article
Google Scholar
Arola A, Schuster G, Myhre G, Kazadzis S, Dey S, Tripathi SN. Inferring absorbing organic carbon content from AERONET data. Atmos Chem Phys. 2011;11(1):215–25. https://doi.org/10.5194/acp-11-215-2011.
CAS
Article
Google Scholar
Chung CE, Ramanathan V, Decremer D. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci. 2012;109(29):11624–9. https://doi.org/10.1073/pnas.1203707109.
Article
Google Scholar
Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res Atmos. 2011;116(D20):n/a-n/a) https://doi.org/10.1029/2011JD016074.
Jo DS, Park RJ, Lee S, Kim SW, Zhang X. A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmos Chem Phys. 2016;16(5):3413–32. https://doi.org/10.5194/acp-16-3413-2016.
CAS
Article
Google Scholar
Wang Q, Jacob DJ, Spackman JR, Perring AE, Schwarz JP, Moteki N, et al. Global budget and radiative forcing of black carbon aerosol: constraints from pole-to-pole (HIPPO) observations across the Pacific. J Geophys Res Atmos. 2014;119(1):195–206. https://doi.org/10.1002/2013JD020824.
Article
Google Scholar
Yan C, Zheng M, Bosch C, Andersson A, Desyaterik Y, Sullivan AP, et al. Important fossil source contribution to brown carbon in Beijing during winter. Sci Rep. 2017;7:43182. https://doi.org/10.1038/srep43182.
Article
Google Scholar
Zhang Y, Forrister H, Liu J, Dibb J, Anderson B, Schwarz JP, et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nat Geosci. 2017;10(7):486–9. https://doi.org/10.1038/ngeo2960. http://www.nature.com/ngeo/journal/v10/n7/abs/ngeo2960.html#supplementary-information
CAS
Article
Google Scholar
Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill KL, et al. Evolution of brown carbon in wildfire plumes. Geophys Res Lett. 2015;42(11):4623–30. https://doi.org/10.1002/2015GL063897.
CAS
Article
Google Scholar
Lee HJ, Aiona PK, Laskin A, Laskin J, Nizkorodov SA. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ Sci Technol. 2014;48(17):10217–26. https://doi.org/10.1021/es502515r.
CAS
Article
Google Scholar
Wang Q, Saturno J, Chi X, Walter D, Lavric JV, Moran-Zuloaga D, et al. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmos Chem Phys. 2016;16(22):14775–94. https://doi.org/10.5194/acp-16-14775-2016.
CAS
Article
Google Scholar
Bahadur R, Praveen PS, Xu Y, Ramanathan V. Solar absorption by elemental and brown carbon determined from spectral observations. Proc Natl Acad Sci. 2012;109(43):17366–71. https://doi.org/10.1073/pnas.1205910109.
Article
Google Scholar
Liu J, Scheuer E, Dibb J, Ziemba LD, Thornhill KL, Anderson BE, et al. Brown carbon in the continental troposphere. Geophys Res Lett. 2014;41(6):2191–5. https://doi.org/10.1002/2013gl058976.
CAS
Article
Google Scholar
Wang X, Heald CL, Liu J, Weber RJ, Campuzano-Jost P, Jimenez JL, Schwarz JP, Perring AE. Exploring the observational constraints on the simulation of brown carbon. Atmos Chem Phys. 2018;18:635–53. https://doi.org/10.5194/acp-18-635-2018.
CAS
Article
Google Scholar
Samset BH, Myhre G. Climate response to externally mixed black carbon as a function of altitude. J Geophys Res Atmos. 2015;120(7):2014JD022849. https://doi.org/10.1002/2014JD022849.
Article
Google Scholar
Peterson DA, Fromm MD, Solbrig JE, Hyer EJ, Surratt ML, Campbell JR. Detection and inventory of intense pyroconvection in Western North America using GOES-15 daytime infrared data. J Appl Meteorol Climatol. 2017;56(2):471–93. https://doi.org/10.1175/jamc-d-16-0226.1.
Article
Google Scholar
Devi JJ, Bergin MH, McKenzie M, Schauer JJ, Weber RJ. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US. Atmos Environ. 2016;136:95–104. https://doi.org/10.1016/j.atmosenv.2016.04.011.
CAS
Article
Google Scholar
Wang X, Heald CL, Sedlacek AJ, de Sá SS, Martin ST, Alexander ML, et al. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations. Atmos Chem Phys. 2016;16(19):12733–52. https://doi.org/10.5194/acp-16-12733-2016.
CAS
Article
Google Scholar
Yang M, Howell SG, Zhuang J, Huebert BJ. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—interpretations of atmospheric measurements during EAST-AIRE. Atmos Chem Phys. 2009;9(6):2035–50. https://doi.org/10.5194/acp-9-2035-2009.
CAS
Article
Google Scholar
WMO. WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd Edition. 2016.
Lewis K, Arnott WP, Moosmüller H, Wold CE. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J Geophys Res Atmos. 2008;113(D16). https://doi.org/10.1029/2007JD009699.
Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys. 2006;6:1777–813.
CAS
Article
Google Scholar
Kok JF, Ridley DA, Zhou Q, Miller RL, Zhao C, Heald CL, et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nature Geosci. 2017;10(4):274–8. https://doi.org/10.1038/ngeo2912.
CAS
Article
Google Scholar
Caponi L, Formenti P, Massabó D, Di Biagio C, Cazaunau M, Pangui E, et al. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study. Atmos Chem Phys. 2017;17(11):7175–91. https://doi.org/10.5194/acp-17-7175-2017.
CAS
Article
Google Scholar
Formenti P, Caquineau S, Chevaillier S, Klaver A, Desboeufs K, Rajot JL, et al. Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa: quantitative partitioning by X-ray absorption spectroscopy. J Geophys Res Atmos. 2014;119(22):12,740–712,754. https://doi.org/10.1002/2014JD021668.
CAS
Article
Google Scholar
Formenti P, Schütz L, Balkanski Y, Desboeufs K, Ebert M, Kandler K, et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys. 2011;11(16):8231–56. https://doi.org/10.5194/acp-11-8231-2011.
CAS
Article
Google Scholar
Balkanski Y, Schulz M, Claquin T, Guibert S. Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys. 2007;7(1):81–95. https://doi.org/10.5194/acp-7-81-2007.
CAS
Article
Google Scholar
Bedidi A, Cervelle B. Light scattering by spherical particles with hematite and goethitelike optical properties: effect of water impregnation. J Geophys Res Solid Earth. 1993;98(B7):11941–52. https://doi.org/10.1029/93JB00188.
Article
Google Scholar
Hunt JM, Wisherd MP, Bonham LC. Infrared absorption spectra of minerals and other inorganic compounds. Anal Chem. 1950;22(12):1478–97. https://doi.org/10.1021/ac60048a006.
CAS
Article
Google Scholar
Fontes MPF, Carvalho IA. Color attributes and mineralogical characteristics, evaluated by radiometry, of highly weathered tropical soils. Soil Sci Soc Am J. 2005;69(4):1162–72. https://doi.org/10.2136/sssaj2003.0312.
CAS
Article
Google Scholar
Shi Z, Krom MD, Jickells TD, Bonneville S, Carslaw KS, Mihalopoulos N, et al. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Res. 2012;5(Supplement C):21–42. https://doi.org/10.1016/j.aeolia.2012.03.001.
Article
Google Scholar
Linke C, Möhler O, Veres A, Mohácsi Á, Bozóki Z, Szabó G, et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos Chem Phys. 2006;6(11):3315–23. https://doi.org/10.5194/acp-6-3315-2006.
CAS
Article
Google Scholar
Ridley DA, Heald CL, Kok JF, Zhao C. An observationally constrained estimate of global dust aerosol optical depth. Atmos Chem Phys. 2016;16(23):15097–117. https://doi.org/10.5194/acp-16-15097-2016.
CAS
Article
Google Scholar
Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, et al. Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys. 2011;11(15):7781–816. https://doi.org/10.5194/acp-11-7781-2011.
CAS
Article
Google Scholar
Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, et al. Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res Atmos. 2006;111(D6). https://doi.org/10.1029/2005JD005796.
Lacagnina C, Hasekamp OP, Bian H, Curci G, Myhre G, van Noije T, et al. Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. J Geophys Res Atmos. 2015;120(18):9814–36. https://doi.org/10.1002/2015JD023501.
Article
Google Scholar
Meng Z, Yang P, Kattawar GW, Bi L, Liou KN, Laszlo I. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: a database for application to radiative transfer calculations. J Aerosol Sci. 2010;41(5):501–12. https://doi.org/10.1016/j.jaerosci.2010.02.008.
CAS
Article
Google Scholar
Kalashnikova OV, Kahn R. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: 2. Sensitivity over dark water. J Geophys Res Atmos. 2006;111(D11):n/a-n/a) https://doi.org/10.1029/2005JD006756.
Chin M, Diehl T, Tan Q, Prospero JM, Kahn RA, Remer LA, et al. Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys. 2014;14(7):3657–90. https://doi.org/10.5194/acp-14-3657-2014.
Article
Google Scholar
Lafon S, Sokolik IN, Rajot JL, Caquineau S, Gaudichet A. Characterization of iron oxides in mineral dust aerosols: implications for light absorption. J Geophys Res Atmos. 2006;111(D21). https://doi.org/10.1029/2005JD007016.
Zhang XL, Wu GJ, Zhang CL, Xu TL, Zhou QQ. What is the real role of iron oxides in the optical properties of dust aerosols? Atmos Chem Phys. 2015;15(21):12159–77. https://doi.org/10.5194/acp-15-12159-2015.
CAS
Article
Google Scholar
Di Biagio C, Formenti P, Balkanski Y, Caponi L, Cazaunau M, Pangui E, et al. Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing. Atmos Chem Phys. 2017;17(3):1901–29. https://doi.org/10.5194/acp-17-1901-2017.
CAS
Article
Google Scholar
Engelbrecht JP, Moosmüller H, Pincock S, Jayanty RKM, Lersch T, Casuccio G. Technical note: mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmos Chem Phys. 2016;16(17):10809–30. https://doi.org/10.5194/acp-16-10809-2016.
CAS
Article
Google Scholar
Todd MC, Washington R, Martins JV, Dubovik O, Lizcano G, M’Bainayel S, et al. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005. J Geophys Res. 2007;112(D6) https://doi.org/10.1029/2006jd007170.
Samset BH, Myhre G, Schulz M. Upward adjustment needed for aerosol radiative forcing uncertainty. Nat Clim Chang. 2014;4(4):230–2. https://doi.org/10.1038/nclimate2170.
Article
Google Scholar
Bellouin N, Quaas J, Morcrette JJ, Boucher O. Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos Chem Phys. 2013;13(4):2045–62. https://doi.org/10.5194/acp-13-2045-2013.
CAS
Article
Google Scholar
Myhre G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science. 2009;325(5937):187–90. https://doi.org/10.1126/science.1174461.
CAS
Article
Google Scholar
Bellouin N, Boucher O, Haywood J, Reddy MS. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature. 2005;438(7071):1138–41. https://doi.org/10.1038/nature04348.
CAS
Article
Google Scholar
Kahn RA. Reducing the uncertainties in direct aerosol radiative forcing. Surv Geophys. 2012;33(3):701–21. https://doi.org/10.1007/s10712-011-9153-z.
Article
Google Scholar
Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ. 1998;66(1):1–16. https://doi.org/10.1016/s0034-4257(98)00031-5.
Article
Google Scholar
Dubovik O, King MD. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res Atmos. 2000;105(D16):20673–96. https://doi.org/10.1029/2000JD900282.
Article
Google Scholar
Samset BH, Myhre G, Forster P, Hodnebrog Ø, Andrews T, Boucher O, et al. Weak hydrological sensitivity to temperature change over land, independent of climate forcing. npj Climate and Atmospheric Science. 2018;1. https://doi.org/10.1038/s41612-017-0005-5.
Wang X, Heald CL, Ridley DA, Schwarz JP, Spackman JR, Perring AE, et al. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos Chem Phys Discuss. 2014;14(11):17527–83. https://doi.org/10.5194/acpd-14-17527-2014.
Article
Google Scholar
Cohen JB, Wang C. Estimating global black carbon emissions using a top-down Kalman filter approach. J Geophys Res Atmos. n/a-n/a. 2013. https://doi.org/10.1002/2013jd019912.
Russell PB, Kacenelenbogen M, Livingston JM, Hasekamp OP, Burton SP, Schuster GL, et al. A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry. J Geophys Res Atmos. 2014;119(16):9838–63. https://doi.org/10.1002/2013JD021411.
Article
Google Scholar
Andrews E, Ogren JA, Kinne S, Samset B. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements. Atmos Chem Phys. 2017;17(9):6041–72. https://doi.org/10.5194/acp-17-6041-2017.
CAS
Article
Google Scholar
Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res Atmos. 2005;110(D10). https://doi.org/10.1029/2004JD004706.
Mallet M, Dubovik O, Nabat P, Dulac F, Kahn R, Sciare J, et al. Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations. Atmos Chem Phys. 2013;13(18):9195–210. https://doi.org/10.5194/acp-13-9195-2013.
CAS
Article
Google Scholar
Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, et al. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res Atmos. 2010;115(D23). https://doi.org/10.1029/2010JD014601.
Kahn RA, Gaitley BJ. An analysis of global aerosol type as retrieved by MISR. J Geophys Res Atmos. 2015;120(9):4248–81. https://doi.org/10.1002/2015jd023322.
Article
Google Scholar
Limbacher JA, Kahn RA. MISR research-aerosol-algorithm refinements for dark water retrievals. Atmos Meas Tech. 2014;7(11):3989–4007. https://doi.org/10.5194/amt-7-3989-2014.
Article
Google Scholar
Limbacher JA, Kahn RA. Updated MISR dark water research aerosol retrieval algorithm—Part 1: coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections. Atmos Meas Tech. 2017;10(4):1539–55. https://doi.org/10.5194/amt-10-1539-2017.
CAS
Article
Google Scholar
Li S, Kahn R, Chin M, Garay MJ, Liu Y. Improving satellite-retrieved aerosol microphysical properties using GOCART data. Atmos Meas Tech. 2015;8(3):1157–71. https://doi.org/10.5194/amt-8-1157-2015.
CAS
Article
Google Scholar
Buchard V, Randles CA, da Silva AM, Darmenov A, Colarco PR, Govindaraju R, et al. The MERRA-2 Aerosol Reanalysis, 1980 onward. Part II: evaluation and case studies. J Clim. 2017;30(17):6851–72. https://doi.org/10.1175/jcli-d-16-0613.1.
Article
Google Scholar
Buchard V, da Silva AM, Colarco PR, Darmenov A, Randles CA, Govindaraju R, et al. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos Chem Phys. 2015;15(10):5743–60. https://doi.org/10.5194/acp-15-5743-2015.
CAS
Article
Google Scholar
Colarco PR, Nowottnick EP, Randles CA, Yi B, Yang P, Kim K-M, et al. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J Geophys Res Atmos. 2014;119(2):753–86. https://doi.org/10.1002/2013jd020046.
Article
Google Scholar
Zhang L, Henze DK, Grell GA, Carmichael GR, Bousserez N, Zhang Q, et al. Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem. Atmos Chem Phys. 2015;15(18):10281–308. https://doi.org/10.5194/acp-15-10281-2015.
CAS
Article
Google Scholar
Dubovik O, Lapyonok T, Litvinov P, Herman M, Fuertes D, Ducos F, et al. GRASP: a versatile algorithm for characterizing the atmosphere. SPIE Newsroom. 2014; https://doi.org/10.1117/2.1201408.005558.
Torres B, Dubovik O, Fuertes D, Schuster G, Cachorro VE, Lapionak T, et al. Advanced characterization of aerosol properties from measurements of spectral optical depth using the GRASP algorithm. Atmos Meas Tech Discuss. 2016;2016:1–47. https://doi.org/10.5194/amt-2016-334.
Article
Google Scholar
Peers F, Waquet F, Cornet C, Dubuisson P, Ducos F, Goloub P, et al. Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect. Atmos Chem Phys. 2015;15(8):4179–96. https://doi.org/10.5194/acp-15-4179-2015.
CAS
Article
Google Scholar
Peers F, Bellouin N, Waquet F, Ducos F, Goloub P, Mollard J, et al. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season. Geophys Res Lett. 2016;43(8):3991–4000. https://doi.org/10.1002/2016gl068222.
CAS
Article
Google Scholar
Torres O, Jethva H, Bhartia PK. Retrieval of aerosol optical depth above clouds from OMI observations: sensitivity analysis and case studies. J Atmos Sci. 2012;69(3):1037–53. https://doi.org/10.1175/jas-d-11-0130.1.
Article
Google Scholar
Chand D, Anderson TL, Wood R, Charlson RJ, Hu Y, Liu Z, et al. Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing. J Geophys Res Atmos. 2008;113(D13). https://doi.org/10.1029/2007JD009433.
Alterskjær K, Kristjánsson JE. The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys Res Lett. 2013;40(1):210–5. https://doi.org/10.1029/2012GL054286.
Article
Google Scholar
Jethva H, Torres O, Remer LA, Bhartia PK. A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: application to MODIS measurements. IEEE Trans Geosci Remote Sens. 2013;51(17):3862–70. https://doi.org/10.1109/TGRS.2012.2230008.
Article
Google Scholar
Meyer K, Platnick S, Zhang Z. Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS. J Geophys Res Atmos. 2015;120(11):5524–47. https://doi.org/10.1002/2015JD023128.
Article
Google Scholar
Sayer AM, Hsu NC, Bettenhausen C, Lee J, Redemann J, Schmid B, et al. Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: sensitivity analysis and first case studies. J Geophys Res Atmos. 2016;121(9):4830–54. https://doi.org/10.1002/2015JD024729.
Article
Google Scholar
Chang I, Christopher S. Identifying absorbing aerosols above clouds from the spinning enhanced visible and infrared imager coupled with NASA A-Train Multiple Sensors. IEEE T Geosci Remote. 2016;54(6):3163–73. https://doi.org/10.1109/TGRS.2015.2513015.
Article
Google Scholar
Appel KW, Pouliot GA, Simon H, Sarwar G, Pye HOT, Napelenok SL, et al. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci Model Dev. 2013;6(4):883–99. https://doi.org/10.5194/gmd-6-883-2013.
CAS
Article
Google Scholar
Eckhardt S, Quennehen B, Olivié DJL, Berntsen TK, Cherian R, Christensen JH, et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmos Chem Phys. 2015;15(16):9413–33. https://doi.org/10.5194/acp-15-9413-2015.
CAS
Article
Google Scholar
Koch D, Schulz M, Kinne S, McNaughton C, Spackman JR, Balkanski Y, et al. Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys. 2009;9(22):9001–26. https://doi.org/10.5194/acp-9-9001-2009.
CAS
Article
Google Scholar
Skeie RB, Berntsen T, Myhre G, Pedersen CA, Ström J, Gerland S, et al. Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmos Chem Phys. 2011;11(14):6809–36. https://doi.org/10.5194/acp-11-6809-2011.
CAS
Article
Google Scholar
Xing J, Mathur R, Pleim J, Hogrefe C, Gan CM, Wong DC, et al. Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. Atmos Chem Phys. 2015;15(5):2723–47. https://doi.org/10.5194/acp-15-2723-2015.
CAS
Article
Google Scholar
Sharma S, Ishizawa M, Chan D, Lavoué D, Andrews E, Eleftheriadis K, et al. 16-year simulation of Arctic black carbon: transport, source contribution, and sensitivity analysis on deposition. J Geophys Res Atmos. 2013;118(2):943–64. https://doi.org/10.1029/2012jd017774.
CAS
Article
Google Scholar
Collaud Coen M, Andrews E, Asmi A, Baltensperger U, Bukowiecki N, Day D, et al. Aerosol decadal trends—part 1: in-situ optical measurements at GAW and IMPROVE stations. Atmos Chem Phys. 2013;13(2):869–94. https://doi.org/10.5194/acp-13-869-2013.
CAS
Article
Google Scholar
Sherman JP, Sheridan PJ, Ogren JA, Andrews E, Hageman D, Schmeisser L, et al. A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions. Atmos Chem Phys. 2015;15(21):12487–517. https://doi.org/10.5194/acp-15-12487-2015.
CAS
Article
Google Scholar
Corrigan CE, Roberts GC, Ramana MV, Kim D, Ramanathan V. Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmos Chem Phys. 2008;8(3):737–47. https://doi.org/10.5194/acp-8-737-2008.
CAS
Article
Google Scholar
Oshima N, Kondo Y, Moteki N, Takegawa N, Koike M, Kita K, et al. Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign. J Geophys Res Atmos. 2012;117(D3):n/a-n/a) https://doi.org/10.1029/2011JD016552.
Allan JD, Morgan WT, Darbyshire E, Flynn MJ, Williams PI, Oram DE, et al. Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmos Chem Phys. 2014;14(20):11393–407. https://doi.org/10.5194/acp-14-11393-2014.
CAS
Article
Google Scholar
Schutgens NAJ, Gryspeerdt E, Weigum N, Tsyro S, Goto D, Schulz M, et al. Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmos Chem Phys. 2016;16(10):6335–53. https://doi.org/10.5194/acp-16-6335-2016.
CAS
Article
Google Scholar
Reddington CL, Carslaw KS, Stier P, Schutgens N, Coe H, Liu D, et al. The Global Aerosol Synthesis and Science Project (GASSP): measurements and modeling to reduce uncertainty. B Am Meteorol Soc. 2017;98(9):1857–77. https://doi.org/10.1175/bams-d-15-00317.1.
Article
Google Scholar
McMeeking GR, Good N, Petters MD, McFiggans G, Coe H. Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmos Chem Phys. 2011;11(10):5099–112. https://doi.org/10.5194/acp-11-5099-2011.
CAS
Article
Google Scholar
Schwarz JP, Perring AE, Markovic MZ, Gao RS, Ohata S, Langridge J, et al. Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. J Aerosol Sci. 2015;81:110–26. https://doi.org/10.1016/j.jaerosci.2014.11.009.
CAS
Article
Google Scholar
Andrews E, Sheridan PJ, Ogren JA. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma. Atmos Chem Phys. 2011;11(20):10661–76. https://doi.org/10.5194/acp-11-10661-2011.
CAS
Article
Google Scholar
Sheridan PJ, Andrews E, Ogren JA, Tackett JL, Winker DM. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements. Atmos Chem Phys. 2012;12(23):11695–721. https://doi.org/10.5194/acp-12-11695-2012.
CAS
Article
Google Scholar
Kahn RA, Berkoff TA, Brock C, Chen G, Ferrare RA, Ghan S, Hansico TF, Hegg DA, Martins JV, McNaughton CS, Murphy DM, Ogren JA, Penner JE, Pilewskie P, Seinfeld JH, Worsnop DR. SAM-CAAM: a concept for acquiring systematic aircraft measurements to characterize aerosol air masses. Bull Amer Meteor Soc. 2017;98:2215–28. https://doi.org/10.1175/BAMS-D-16-0003.1.
Article
Google Scholar
Kahn RA, Chen Y, Nelson DL, Leung F-Y, Li Q, Diner DJ, et al. Wildfire smoke injection heights: two perspectives from space. Geophys Res Lett. 2008;35(4). https://doi.org/10.1029/2007GL032165.