Skip to main content
Log in

Classification of rational 1-forms on the Riemann sphere up to \(\text {PSL}(2, \mathbb {C})\)

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

We study the family \(\varOmega ^1(-1^{s})\) of rational 1-forms on the Riemann sphere, having exactly \(-s \le -2\) simple poles. Three equivalent \((2s-1)\)-dimensional complex atlases on \(\varOmega ^1(-1^{s})\), using coefficients, zeros–poles and residues–poles of the 1-forms, are recognized. A rational 1-form is called isochronous when all their residues are purely imaginary. We prove that the subfamily \(\mathcal {RI}\varOmega ^1(-1^{s})\) of isochronous 1-forms is a \((3s-1)\)-dimensional real analytic submanifold in the complex manifold \(\varOmega ^1(-1^{s})\). The complex Lie group \(\text {PSL}(2,\mathbb {C})\) acts holomorphically on \(\varOmega ^1(-1^{s})\). For \(s \ge 3\), the \(\text {PSL}(2,\mathbb {C})\)-action is proper on \(\varOmega ^1(-1^{s})\) and \(\mathcal {RI}\varOmega ^1(-1^{s})\). Therefore, the quotients \(\varOmega ^1(-1^{s})/\text {PSL}(2,\mathbb {C})\) and \(\mathcal {RI}\varOmega ^1(-1^{s})/\text {PSL}(2,\mathbb {C})\) admit a stratification by orbit types. Realizations for the quotients \(\varOmega ^1(-1^{s})/\text {PSL}(2,\mathbb {C})\) and \(\mathcal {RI}\varOmega ^1(-1^{s})/\text {PSL}(2,\mathbb {C})\) are given, using an explicit set of \(\text {PSL}(2,\mathbb {C})\)-invariant functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We convene that a configuration is an unordered set of points different between them.

  2. The cross-ratio is defined as \((p_1, p_2, p_3, p_4) := \frac{(p_4-p_1)(p_3-p_2)}{(p_4-p_2)(p_3-p_1)}.\)

  3. We use definition of realization as in [28, p. 6].

References

  1. Alvarez-Parrilla, A., Frías-Armenta, M.E., Yee-Romero, C.: Classification of rational differential forms on the Riemann sphere, via their isotropy group (2018) (preprint)

  2. Alvarez-Parrilla, A., Muciño-Raymundo, J.: Dynamics of singular complex analytic vector fields with essential singularities I. Conform. Geom. Dyn. 21, 126–224 (2017)

    Article  MathSciNet  Google Scholar 

  3. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Springer, New York (2005)

    MATH  Google Scholar 

  4. Boissy, C.: Connected components of the strata of the moduli space of meromorphic differentials. Comment. Math. Helv. 90(2), 255–286 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bourbaki, N.: General Topology, Chaps. 1–4. Springer, Berlin (1998)

  6. Duistermaat, J.J., Kolk, J.A.: Lie Groups. Springer, Berlin (2000)

    Book  Google Scholar 

  7. Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1992)

    Book  Google Scholar 

  8. Frías-Armenta, M.E., Hernández-Moguel, L., Muciño-Raymundo, J.: Spaces of singular flat metrics from meromorphic 1-forms on the Riemann sphere, pp. 1–37 (2018) (preprint)

  9. Frías-Armenta, M.E., Muciño-Raymundo, J.: Topological and analytical classification of vector fields with only isochronous centres. J. Differ. Equ. Appl. 19(10), 1694–1728 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fritzsche, K., Grauert, H.: From Holomorphic Functions to Complex Manifolds. Springer, New York (2002)

    Book  Google Scholar 

  11. Gavrilov, L.: Isochronicity of plane polynomial Hamiltonian systems. Nonlinearity 10(2), 433–448 (1997)

    Article  MathSciNet  Google Scholar 

  12. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  Google Scholar 

  13. Jenkins, J.A.: On the existence of certain general extremal metrics. Ann. Math. 2(66), 440–453 (1957)

    Article  MathSciNet  Google Scholar 

  14. Jones, G.A., Singerman, D.: Complex Functions. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  15. Katz, G.: How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties. Expo. Math. 21(3), 219–261 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kerckhoff, S., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic differentials. Ann. Math. (2) 124(2), 293–311 (1986)

    Article  MathSciNet  Google Scholar 

  17. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. B. G. Teubner/Birkhäuser Verlag, Stuttgart/Basel (1993)

    Book  Google Scholar 

  18. Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153(3), 631–678 (2003)

    Article  MathSciNet  Google Scholar 

  19. Mardešić, P., Rousseau, C., Toni, B.: Linearization of isochronous centers. J. Differ. Equ. 121(1), 67–108 (1995)

    Article  MathSciNet  Google Scholar 

  20. Muciño-Raymundo, J.: Complex structures adapted to smooth vector fields. Math. Ann. 322(2), 229–265 (2002)

    Article  MathSciNet  Google Scholar 

  21. Muciño-Raymundo, J., Valero-Valdés, C.: Bifurcations of meromorphic vector fields on the Riemann sphere. Ergod. Theory Dyn. Syst. 15(6), 1211–1222 (1995)

    Article  MathSciNet  Google Scholar 

  22. Patterson, D.B.: Some remarks on the moduli of punctured spheres. Am. J. Math. 95, 713–719 (1973)

    Article  MathSciNet  Google Scholar 

  23. Solynin, A.Y.: Quadratic Differentials and Weighted Graphs on Compact Surfaces. In: Gustafsson, B., Vasil’ev A. (eds.) Analysis and Mathematical Physics. Trends in Mathematics. Birkhäuser Basel, pp. 473–505 (2009)

  24. Strebel, K.: On quadratic differentials with closed trajectories and second order poles. J. Anal. Math. 19, 373–382 (1967)

    Article  MathSciNet  Google Scholar 

  25. Strebel, K.: Quadratic Differentials. Springer, Berlin (1984)

    Book  Google Scholar 

  26. Teichmüller, O.: Untersuchungen über konforme und quasikonforme Abbildung. Dtsch. Math. 3, 621–678 (1938)

    MATH  Google Scholar 

  27. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  28. Yoshida, M.: Hypergeometric Functions, My Love. Friedr. Vieweg & Sohn, Braunschweig (1997)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank his advisor Jesús Muciño-Raymundo for all fruitful discussions with him during the preparation of this paper and the PhD thesis. This work was supported by a PhD scholarship provided by CONACyT at the Centro de Ciencias Matemáticas, UNAM and Instituto de Física y Matemáticas de la Universidad Michoacana de San Nicolás de Hidalgo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio C. Magaña-Cáceres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaña-Cáceres, J.C. Classification of rational 1-forms on the Riemann sphere up to \(\text {PSL}(2, \mathbb {C})\). Bol. Soc. Mat. Mex. 25, 597–617 (2019). https://doi.org/10.1007/s40590-018-0217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-018-0217-7

Keywords

Mathematics Subject Classification

Navigation