Optimality of the uniform rule under single-peaked preferences

  • Ruben Juarez
  • Jung S. You
Research Article


Consider the problem of distributing a fixed amount of a divisible resource among agents whose preferences are single-peaked. The uniform rule has been widely characterized under an ordinal utility approach. Instead, in a cardinal utility approach, we show that the uniform rule is the only consistent rule that maximizes the worst-case surplus among strategy-proof and ordinally efficient mechanisms.


Single-peaked preferences Strategy-proofness Worst-case analysis Efficiency Uniform rule Consistency Divisible good Economic surplus 

JEL Classification

D63 D70 D71 


  1. Aggarwal, G., Fiat, A., Goldberg, A., Hartline, J., Immorlica, N., Sudan, M.: Derandomization of auctions. In: Proceedings of the Annual Symposium on Theory of Computing, pp. 619-625 (2005)Google Scholar
  2. Alon, N., Feldman, M., Procaccia, A., Tennenholtz, M.: Strategyproof approximation of the minimax on networks. Math. Oper. Res. 35(3), 513–526 (2010)CrossRefGoogle Scholar
  3. Barberà, S., Jackson, M., Neme, A.: Strategy-proof allotment rules. Games Econ. Behav. 18, 1–21 (1997)CrossRefGoogle Scholar
  4. Benassy, J.: The Economics of Market Disequilibrium. Academic Press, San Diego (1982)Google Scholar
  5. Cavallo, R.: Optimal decision making with minimal waste: Strategyproof redistribution of VCG payments. In: International Conference on Autonomous Agents and Multi-agent Systems, Hakodate, Japan, pp. 882–889 (2006)Google Scholar
  6. Ching, S.: A simple characterization of the uniform rule. Econ. Lett. 40, 57–60 (1992)CrossRefGoogle Scholar
  7. Ching, S.: An alternative characterization of the uniform rule. Soc. Choice Welfare 11, 131–136 (1994)CrossRefGoogle Scholar
  8. Chun, Y.: Distribution properties of the uniform rule in economies with single-peaked preferences. Econ. Lett. 67, 23–27 (2000)CrossRefGoogle Scholar
  9. Dagan, N.: A note on Thomson’s characterizations of the uniform rule. J. Econ. Theory 69, 255–261 (1996)CrossRefGoogle Scholar
  10. Fischer, F., Klimm, M.: Optimal impartial selection. SIAM J. Comput. 44(5), 1263–1285 (2015)CrossRefGoogle Scholar
  11. Goldberg, A., Hartline, J., Wright, A.: Competitive auctions and digital goods. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, pp. 735-744 (2001)Google Scholar
  12. Goldberg, A., Hartline, J., Karlin, A., Saks, M., Wright, A.: Competitive auctions. Games Econ. Behav. 55, 242–269 (2006)CrossRefGoogle Scholar
  13. Guo, M., Conitzer, V.: Worst-case optimal redistribution of VCG payments in multi-unit auctions. Games Econ. Behav. 67, 69–98 (2009)CrossRefGoogle Scholar
  14. Guo, M., Conitzer, V.: Optimal-in-expectation redistribution mechanisms. Artif. Intell. 174, 363–381 (2010)CrossRefGoogle Scholar
  15. Hartline, J., McGrew, R.: From optimal limited to unlimited supply auctions. In: Proceedings of the ACM Conference on Electronic Commerce, Vancouver, Canada, pp. 175–182 (2005)Google Scholar
  16. Holmström, B.: Groves’ scheme on restricted domains. Econometrica 47(5), 1137–1144 (1979)CrossRefGoogle Scholar
  17. Hurwicz, L.: On informationally decentralized systems. In: McGuire, C., Radner, R. (eds.) Decision and Organization, pp. 297–336. Amsterdam, North-Holland (1972)Google Scholar
  18. Johari, R., Tsitsiklis, J.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29(3), 407–435 (2004)CrossRefGoogle Scholar
  19. Juarez, R.: The worst absolute surplus loss in the problem of commons: random priority vs. average cost. Econ. Theory 34(1), 69–84 (2008)CrossRefGoogle Scholar
  20. Juarez, R.: Optimal group strategyproof cost sharing. Mimeo University of Hawaii (2015)Google Scholar
  21. Juarez, R., Kumar, R.: Implementing efficient graphs in connection networks. Econ. Theory 54(2), 359–403 (2013)CrossRefGoogle Scholar
  22. Moulin, H.: Almost budget-balanced VCG mechanisms to assign multiple objects. J. Econ. Theory 144, 96–119 (2009)CrossRefGoogle Scholar
  23. Moulin, H., Shenker, S.: Strategy-proof sharing of submodular costs: budget balance versus efficiency. Econ. Theory 18, 511–533 (2001)CrossRefGoogle Scholar
  24. Procaccia, A., Tennenholtz, M.: Approximate Mechanism design without money. ACM Trans. Econ. Comput. 1(4), Article 18 (2013)Google Scholar
  25. Sönmez, T.: Consistency, monotonicity, and the uniform rule. Econ. Lett. 46, 229–235 (1994)CrossRefGoogle Scholar
  26. Sprumont, Y.: The division problem with single-peaked preferences: a characterization of the uniform allocation rule. Econometrica 59(2), 509–519 (1991)CrossRefGoogle Scholar
  27. Thomson, W.: Resource-monotonic solutions to the problem of fair division when preferences are single-peaked. Soc. Choice Welfare 11, 205–223 (1994a)Google Scholar
  28. Thomson, W.: Consistent solutions to the problem of fair division when preferences are single-peaked. J. Econ. Theory 63, 219–245 (1994b)CrossRefGoogle Scholar
  29. Thomson, W.: Population-monotonic solutions to the problem of fair division when preferences are single-peaked. Econ. Theory 5, 229–246 (1995)CrossRefGoogle Scholar
  30. Thomson, W.: The replacement principle in economies with single-peaked preferences. J. Econ. Theory 76, 145–168 (1997)CrossRefGoogle Scholar
  31. You, J.: Optimal VCG mechanisms to assign multiple bads. Games Econ. Behav. 92, 166–190 (2015)CrossRefGoogle Scholar

Copyright information

© Society for the Advancement of Economic Theory 2018

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of HawaiiHonoluluUSA
  2. 2.Department of EconomicsCalifornia State University, East BayHaywardUSA

Personalised recommendations