Skip to main content

Advertisement

Log in

Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation

  • Cellular Transplants (G Orlando, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Type 1 diabetes (T1D) is an autoimmune disease characterized by the loss of insulin-producing cells in pancreatic islets. Despite islet transplantation is effective for selected T1D patients, its widespread application is limited by islet donor shortage and the need for lifelong immunosuppression. Micro- and macro-encapsulation aimed at enveloping cells in a perm-selective biocompatible membrane can potentially eliminate these limitations. This review summarizes tissue-engineering approaches tested in preclinical models of islet transplantation, highlighting technologies currently in the clinic.

Recent Findings

More than 40 years of intensive research raised promises and challenges. Ongoing clinical studies have not yet achieved the desired success as obstacles remained to be overcome: deleterious fibrotic response toward the biomaterial, poor vascularization, insufficient oxygen delivery, and recipient’s immune reaction.

Summary

Only the joint effort of bioengineering, cell biology, and immunology expertises will foster the development of novel, effective, and safe technologies for insulin-producing cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

IDF:

International Diabetes Federation

T1D:

Type 1 diabetes

CITR:

Collaborative Islet Transplant Registry

UNOS:

United Network for Organ Sharing

SRTR:

Scientific Registry for Transplant Recipients

HbA1c:

Glycated hemoglobin

ECM:

Extracellular matrix

ESC:

Embryonic stem cells

iPSC:

Induced pluripotent stem cells

MSC:

Mesenchymal stem cells

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: • Of Importance •• Of Major Importance

  1. Franklin V. Influences on technology use and efficacy in type 1 diabetes. J Diabetes Sci Technol. 2016;10(3):647–55. doi:10.1177/1932296816639315.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deiss D, Adolfsson P, Alkemade-van Zomeren M, Bolli GB, Charpentier G, Cobelli C, et al. Insulin infusion set use: European perspectives and recommendations. Diabetes Technol Ther. 2016;18(9):517–24. doi:10.1089/dia.2016.07281.sf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mannucci E, Monami M, Dicembrini I, Piselli A, Porta M. Achieving HbA1c targets in clinical trials and in the real world: a systematic review and meta-analysis. J Endocrinol Investig. 2014;37(5):477–95. doi:10.1007/s40618-014-0069-6.

    Article  CAS  Google Scholar 

  4. Kovatchev BP. Is glycemic variability important to assessing antidiabetes therapies? Current diabetes reports. 2006;6(5):350–6.

    Article  PubMed  Google Scholar 

  5. Shafiee G, Mohajeri-Tehrani M, Pajouhi M, Larijani B. The importance of hypoglycemia in diabetic patients. Journal of diabetes and metabolic disorders. 2012;11(1):17. doi:10.1186/2251-6581-11-17.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lind M, Svensson AM, Kosiborod M, Gudbjornsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82. doi:10.1056/NEJMoa1408214.

    Article  PubMed  CAS  Google Scholar 

  7. Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA. 2015;313(1):37–44. doi:10.1001/jama.2014.16425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanstone M, Rewegan A, Brundisini F, Dejean D, Giacomini M. Patient perspectives on quality of life with uncontrolled type 1 diabetes mellitus: a systematic review and qualitative meta-synthesis. Ontario health technology assessment series. 2015;15(17):1–29.

    PubMed  PubMed Central  Google Scholar 

  9. Alvarado-Martel D, Velasco R, Sanchez-Hernandez RM, Carrillo A, Novoa FJ, Wagner AM. Quality of life and type 1 diabetes: a study assessing patients’ perceptions and self-management needs. Patient preference and adherence. 2015;9:1315–23. doi:10.2147/PPA.S87310.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30. doi:10.1056/NEJMoa061267.

    Article  CAS  PubMed  Google Scholar 

  11. Ryan EA, Paty BW, Senior PA, Lakey JR, Bigam D, Shapiro AM. Beta-score: an assessment of beta-cell function after islet transplantation. Diabetes Care. 2005;28(2):343–7.

    Article  PubMed  Google Scholar 

  12. Paty BW, Senior PA, Lakey JR, Shapiro AM, Ryan EA. Assessment of glycemic control after islet transplantation using the continuous glucose monitor in insulin-independent versus insulin-requiring type 1 diabetes subjects. Diabetes Technol Ther. 2006;8(2):165–73. doi:10.1089/dia.2006.8.165.

    Article  CAS  PubMed  Google Scholar 

  13. Foster NC, Miller KM, Tamborlane WV, Bergenstal RM, Beck RW. Continuous glucose monitoring in patients with type 1 diabetes using insulin injections. Diabetes Care. 2016;39(6):e81–2. doi:10.2337/dc16-0207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holmes-Walker DJ, Kay TW. Long-term effects of islet transplantation. Current opinion in organ transplantation. 2016;21(5):497–502. doi:10.1097/MOT.0000000000000355.

    Article  CAS  PubMed  Google Scholar 

  15. Holmes-Walker DJ, Gunton JE, Payk M, Donath S, Hawthorne WJ, Loudovaris T, et al. Islet transplantation provides superior glycemic control with less hypoglycemia compared to continuous subcutaneous insulin infusion (CSII) or multiple daily insulin injections (MDI). Transplantation. 2016; doi:10.1097/TP.0000000000001381.

  16. • Bellin MD, Barton FB, Heitman A, Harmon JV, Kandaswamy R, Balamurugan AN, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(6):1576–83. doi:10.1111/j.1600-6143.2011.03977.x. This study highlight the potential for prolonged glycemic stabilization in selected T1D patients after intraportal allogeneic islet transplantion

    Article  CAS  Google Scholar 

  17. Berney T, Ferrari-Lacraz S, Buhler L, Oberholzer J, Marangon N, Philippe J, et al. Long-term insulin-independence after allogeneic islet transplantation for type 1 diabetes: over the 10-year mark. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2009;9(2):419–23. doi:10.1111/j.1600-6143.2008.02481.x.

    Article  CAS  Google Scholar 

  18. Muller YD, Gupta S, Morel P, Borot S, Bettens F, Truchetet ME, et al. Transplanted human pancreatic islets after long-term insulin independence. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(4):1093–7. doi:10.1111/ajt.12138.

    Article  CAS  Google Scholar 

  19. Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9(10):598–606. doi:10.1038/nrendo.2013.145.

    Article  CAS  PubMed  Google Scholar 

  20. Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol. 2016;53(5):683–91. doi:10.1007/s00592-016-0847-z.

    Article  CAS  PubMed  Google Scholar 

  21. van der Torren CR, Zaldumbide A, Duinkerken G, Brand-Schaaf SH, Peakman M, Stange G, et al. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia. 2017;60(1):126–33. doi:10.1007/s00125-016-4125-y.

    Article  PubMed  CAS  Google Scholar 

  22. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and old world monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263(33):17755–62.

    CAS  PubMed  Google Scholar 

  23. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997;3(3):282–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. doi:10.1038/nbt1393.

    Article  CAS  PubMed  Google Scholar 

  25. Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67-68:35–73. doi:10.1016/j.addr.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  26. Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: more than a membrane story. World J Transplant. 2016;6(1):69–90. doi:10.5500/wjt.v6.i1.69.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2016; doi:10.1038/nrd.2016.232.

  28. De Temmerman ML, Demeester J, De Smedt SC, Rejman J. Tailoring layer-by-layer capsules for biomedical applications. Nanomedicine. 2012;7(5):771–88. doi:10.2217/nnm.12.48.

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira MB, Hatami J, Mano JF. Coating strategies using layer-by-layer deposition for cell encapsulation. Chemistry, an Asian journal. 2016;11(12):1753–64. doi:10.1002/asia.201600145.

    Article  CAS  PubMed  Google Scholar 

  30. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32. doi:10.1016/j.molmed.2011.03.005S1471-4914(11)00063-3.

  31. Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, et al. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther. 2015;6:107. doi:10.1186/s13287-015-0089-y10.1186/s13287-015-0089-y.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10.

    Article  CAS  PubMed  Google Scholar 

  33. Pham-Hua D, Padgett LE, Xue B, Anderson B, Zeiger M, Barra JM, et al. Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials. 2017;128:19–32. doi:10.1016/j.biomaterials.2017.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bloch K, Vanichkin A, Gil-Ad I, Vardi P, Weizman A. Insulin delivery to the brain using intracranial implantation of alginate-encapsulated pancreatic islets. J Tissue Eng Regen Med. 2017; doi:10.1002/term.2235.

  35. Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22(3):306–11. doi:10.1038/nm.4030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jo EH, Hwang YH, Lee DY. Encapsulation of pancreatic islet with HMGB1 fragment for attenuating inflammation. Biomaterials research. 2015;19:21. doi:10.1186/s40824-015-0042-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park HS, Kim JW, Lee SH, Yang HK, Ham DS, Sun CL, et al. Antifibrotic effect of rapamycin containing polyethylene glycol-coated alginate microcapsule in islet xenotransplantation. J Tissue Eng Regen Med. 2015; doi:10.1002/term.2029.

  38. Hamilton DC, Shih HH, Schubert RA, Michie SA, Staats PN, Kaplan DL, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regen Med. 2017;11(3):887–95. doi:10.1002/term.1990.

    Article  CAS  PubMed  Google Scholar 

  39. Hillberg AL, Oudshoorn M, Lam JB, Kathirgamanathan K. Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate. J Biomed Mater Res B Appl Biomater. 2015;103(3):503–18. doi:10.1002/jbm.b.33185.

    Article  PubMed  CAS  Google Scholar 

  40. Hlavaty KA, Gibly RF, Zhang X, Rives CB, Graham JG, Lowe WL Jr, et al. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(7):1523–32. doi:10.1111/ajt.12742.

    Article  CAS  Google Scholar 

  41. Jun Y, Kang AR, Lee JS, Park SJ, Lee DY, Moon SH, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials. 2014;35(17):4815–26. doi:10.1016/j.biomaterials.2014.02.045.

    Article  CAS  PubMed  Google Scholar 

  42. Rengifo HR, Giraldo JA, Labrada I, Stabler CL. Long-term survival of allograft murine islets coated via covalently stabilized polymers. Advanced healthcare materials. 2014;3(7):1061–70. doi:10.1002/adhm.201300573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krishnan R, Arora RP, Alexander M, White SM, Lamb MW, Foster CE 3rd, et al. Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials. 2014;35(3):891–8. doi:10.1016/j.biomaterials.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  44. Jaroch DB, Lu J, Madangopal R, Stull ND, Stensberg M, Shi J, et al. Mouse and human islets survive and function after coating by biosilicification. Am J Physiol Endocrinol Metab. 2013;305(10):E1230–40. doi:10.1152/ajpendo.00081.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kerby A, Jones ES, Jones PM, King AJ. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy. 2013;15(2):192–200. doi:10.1016/j.jcyt.2012.10.018.

    Article  CAS  PubMed  Google Scholar 

  46. Jun Y, Kim MJ, Hwang YH, Jeon EA, Kang AR, Lee SH, et al. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials. 2013;34(33):8122–30. doi:10.1016/j.biomaterials.2013.07.079.

    Article  CAS  PubMed  Google Scholar 

  47. Sabek OM, Ferrati S, Fraga DW, Sih J, Zabre EV, Fine DH, et al. Characterization of a nanogland for the autotransplantation of human pancreatic islets. Lab Chip. 2013;13(18):3675–88. doi:10.1039/c3lc50601k.

    Article  CAS  PubMed  Google Scholar 

  48. Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC, et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials. 2013;34(23):5792–801. doi:10.1016/j.biomaterials.2013.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holdcraft RW, Gazda LS, Circle L, Adkins H, Harbeck SG, Meyer ED, et al. Enhancement of in vitro and in vivo function of agarose-encapsulated porcine islets by changes in the islet microenvironment. Cell Transplant. 2014;23(8):929–44. doi:10.3727/096368913X667033.

    Article  PubMed  Google Scholar 

  50. Liao SW, Rawson J, Omori K, Ishiyama K, Mozhdehi D, Oancea AR, et al. Maintaining functional islets through encapsulation in an injectable saccharide-peptide hydrogel. Biomaterials. 2013;34(16):3984–91. doi:10.1016/j.biomaterials.2013.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong H, Fahmy TM, Metcalfe SM, Morton SL, Dong X, Inverardi L, et al. Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLoS One. 2012;7(12):e50265. doi:10.1371/journal.pone.0050265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhi ZL, Kerby A, King AJ, Jones PM, Pickup JC. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia. 2012;55(4):1081–90. doi:10.1007/s00125-011-2431-y.

    Article  CAS  PubMed  Google Scholar 

  53. Lamb M, Storrs R, Li S, Liang O, Laugenour K, Dorian R, et al. Function and viability of human islets encapsulated in alginate sheets: in vitro and in vivo culture. Transplant Proc. 2011;43(9):3265–6. doi:10.1016/j.transproceed.2011.10.028.

    Article  CAS  PubMed  Google Scholar 

  54. McQuilling JP, Arenas-Herrera J, Childers C, Pareta RA, Khanna O, Jiang B, et al. New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant Proc. 2011;43(9):3262–4. doi:10.1016/j.transproceed.2011.10.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, et al. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials. 2012;33(3):837–45. doi:10.1016/j.biomaterials.2011.10.014.

    Article  CAS  PubMed  Google Scholar 

  56. Vaithilingam V, Quayum N, Joglekar MV, Jensen J, Hardikar AA, Oberholzer J, et al. Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials. 2011;32(33):8416–25. doi:10.1016/j.biomaterials.2011.06.044.

    Article  CAS  PubMed  Google Scholar 

  57. Chandra V, Swetha G, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, et al. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One. 2011;6(6):e20615. doi:10.1371/journal.pone.0020615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Veriter S, Aouassar N, Adnet PY, Paridaens MS, Stuckman C, Jordan B, et al. The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials. 2011;32(26):5945–56. doi:10.1016/j.biomaterials.2011.02.061.

    Article  CAS  PubMed  Google Scholar 

  59. Ngoc PK, Phuc PV, Nhung TH, Thuy DT, Nguyet NT. Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Hum Cell. 2011;24(2):86–95. doi:10.1007/s13577-011-0018-z.

    Article  PubMed  Google Scholar 

  60. Jourdan G, Dusseault J, Benhamou PY, Rosenberg L, Halle JP. Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther. 2011;18(6):539–45. doi:10.1038/gt.2010.166.

    Article  CAS  PubMed  Google Scholar 

  61. Schneider S, Klein HH. Preserved insulin secretion capacity and graft function of cryostored encapsulated rat islets. Regul Pept. 2011;166(1–3):135–8. doi:10.1016/j.regpep.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  62. Kadam S, Muthyala S, Nair P, Bhonde R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. The review of diabetic studies : RDS. 2010;7(2):168–82. doi:10.1900/RDS.2010.7.168.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Qi Z, Shen Y, Yanai G, Yang K, Shirouzu Y, Hiura A, et al. The in vivo performance of polyvinyl alcohol macro-encapsulated islets. Biomaterials. 2010;31(14):4026–31. doi:10.1016/j.biomaterials.2010.01.088.

    Article  CAS  PubMed  Google Scholar 

  64. O’Sullivan ES, Johnson AS, Omer A, Hollister-Lock J, Bonner-Weir S, Colton CK, et al. Rat islet cell aggregates are superior to islets for transplantation in microcapsules. Diabetologia. 2010;53(5):937–45. doi:10.1007/s00125-009-1653-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu XY, Nothias JM, Scavone A, Garfinkel M, Millis JM. Biocompatibility investigation of polyethylene glycol and alginate-poly-L-lysine for islet encapsulation. ASAIO J. 2010;56(3):241–5. doi:10.1097/MAT.0b013e3181d7b8e3.

    Article  CAS  PubMed  Google Scholar 

  66. Veriter S, Mergen J, Goebbels RM, Aouassar N, Gregoire C, Jordan B, et al. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation. Tissue Eng A. 2010;16(5):1503–13. doi:10.1089/ten.TEA.2009.0286.

    Article  CAS  Google Scholar 

  67. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26. doi:10.1016/j.progpolymsci.2011.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 2014;67-68:15–34. doi:10.1016/j.addr.2013.11.005.

    Article  PubMed  CAS  Google Scholar 

  69. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet. 1994;343(8903):950–1.

    Article  CAS  PubMed  Google Scholar 

  70. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care. 2006;29(1):137–8.

    Article  PubMed  Google Scholar 

  71. • Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34(11):2406–9. doi:10.2337/dc11-0731. This study performed in Italy represents the first pilot clinical trial on alginate microencapsulated allogeneic islet transplantation in non-immunosuppressed patients with long-lasting T1D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care. 2009;32(10):1887–9. doi:10.2337/dc09-0744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14(2):157–61. doi:10.1111/j.1399-3089.2007.00384.x.

    Article  PubMed  Google Scholar 

  74. Matsumoto S, Tan P, Baker J, Durbin K, Tomiya M, Azuma K, et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc. 2014;46(6):1992–5. doi:10.1016/j.transproceed.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  75. • Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine. 2016;12:255–62. doi:10.1016/j.ebiom.2016.08.034. This is the first phase 1/2 clinical study investigating safety and efficacy of intraperitoneal transplantation of alginate microencapsulated neonatal porcine islets in non-immunosuppressed T1D patients.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Algire GH, Legallais FY. Recent developments in the transparent-chamber technique as adapted to the mouse. J Natl Cancer Inst. 1949;10(2):225–53. incl 8 pl.

    CAS  PubMed  Google Scholar 

  77. Prehn RT, Weaver JM, Algire GH. The diffusion-chamber technique applied to a study of the nature of homograft resistance. J Natl Cancer Inst. 1954;15(3):509–17.

    CAS  PubMed  Google Scholar 

  78. Strautz RL. Studies of hereditary-obese mice (obob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia. 1970;6(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  79. Klomp GF, Hashiguchi H, Ursell PC, Takeda Y, Taguchi T, Dobelle WH. Macroporous hydrogel membranes for a hybrid artificial pancreas II. Biocompatibility. J Biomed Mater Res. 1983;17(5):865–71. doi:10.1002/jbm.820170513.

    Article  CAS  PubMed  Google Scholar 

  80. • Valente U, Ferro M, Campisi C, Parodi F, Tosatti E. Allogeneic pancreatic islet transplantation by means of artificial membrane chambers in 13 diabetic recipients. Transplant Proc. 1980;12(4 Suppl 2):223–6. This is the first-in-man study reporting the use of a macrodevice for allogeneic islet transplantation in T1D patients

    CAS  PubMed  Google Scholar 

  81. Chen Y, Mason NS, Sparks RE, Scharp DW, Ballinger WF. Collagenase immobilized on cellulose acetate membranes. Biomaterials: interfacial phenomena and applications. Advances in chemistry. Am Chem Soc. 1982;199:483–91.

  82. Brauker J, Martinson LA, Young SK, Johnson RC. Local inflammatory response around diffusion chambers containing xenografts. Nonspecific destruction of tissues and decreased local vascularization. Transplantation. 1996;61(12):1671–7.

    Article  CAS  PubMed  Google Scholar 

  83. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29(12):1517–24. doi:10.1002/jbm.820291208.

    Article  CAS  PubMed  Google Scholar 

  84. Lee SH, Hao E, Savinov AY, Geron I, Strongin AY, Itkin-Ansari P. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation. 2009;87(7):983–91. doi:10.1097/TP.0b013e31819c86ea.

    Article  PubMed  PubMed Central  Google Scholar 

  85. •• Motte E, Szepessy E, Suenens K, Stange G, Bomans M, Jacobs-Tulleneers-Thevissen D, et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Phys Endocrinol Metab. 2014;307(9):E838–46. doi:10.1152/ajpendo.00219.2014. These preclinical data support the therapeutic potential of human ESC-derived insulin-producing cells as alternative to islets for transplantation by using the biocompatible immunoisolated TheraCyte Device.

    Article  CAS  Google Scholar 

  86. Rafael E, Wernerson A, Arner P, Tibell A. In vivo studies on insulin permeability of an immunoisolation device intended for islet transplantation using the microdialysis technique. European surgical research Europaische chirurgische Forschung Recherches chirurgicales europeennes. 1999;31(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  87. Lanza RP, Butler DH, Borland KM, Staruk JE, Faustman DL, Solomon BA, et al. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sci U S A. 1991;88(24):11100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumagai-Braesch M, Jacobson S, Mori H, Jia X, Takahashi T, Wernerson A, et al. The TheraCyte device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013;22(7):1137–46. doi:10.3727/096368912X657486.

    Article  PubMed  Google Scholar 

  89. Fotino N, Fotino C, Pileggi A. Re-engineering islet cell transplantation. Pharmacol Res. 2015;98:76–85. doi:10.1016/j.phrs.2015.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Storrs R, Dorian R, King SR, Lakey J, Rilo H. Preclinical development of the islet sheet. Ann N Y Acad Sci. 2001;944:252–66.

    Article  CAS  PubMed  Google Scholar 

  91. • Ludwig B, Zimerman B, Steffen A, Yavriants K, Azarov D, Reichel A, et al. A novel device for islet transplantation providing immune protection and oxygen supply. Horm Metab Res. 2010;42(13):918–22. doi:10.1055/s-0030-1267916. The authors describe an extravascular (subcutaneous) transplant macrodevice (Beta-O 2 Device) engineered to support long-term graft function by increasing oxygen diffusion and creating an immunoprotected microenvironment.

    Article  CAS  PubMed  Google Scholar 

  92. Ludwig B, Rotem A, Schmid J, Weir GC, Colton CK, Brendel MD, et al. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci U S A. 2012;109(13):5022–7. doi:10.1073/pnas.1201868109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rokstad AM, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, et al. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 2011;7(6):2566–78. doi:10.1016/j.actbio.2011.03.011.

    Article  CAS  PubMed  Google Scholar 

  94. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100. doi:10.1016/j.smim.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  95. Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12(2):188–96. doi:10.1208/s12248-010-9175-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paredes-Juarez GA, de Haan BJ, Faas MM, de Vos P. The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules. J Control Release. 2013;172(3):983–92. doi:10.1016/j.jconrel.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  97. Liu WF, Ma M, Bratlie KM, Dang TT, Langer R, Anderson DG. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials. 2011;32(7):1796–801. doi:10.1016/j.biomaterials.2010.11.029.

    Article  PubMed  CAS  Google Scholar 

  98. •• Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14(6):643–51. doi:10.1038/nmat4290. The authors prove that device geometry affects in vivo biocompatibility, host recognition and subsequent foreign body response, crucial events that could finally compromise its efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Motté E, Szepessy E, Suenens K, Stangé G, Bomans M, Jacobs-Tulleneers-Thevissen D, et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014;307(9):E838–E46. doi:10.1152/ajpendo.00219.2014.

    Article  PubMed  CAS  Google Scholar 

  100. Cantley J, Grey ST, Maxwell PH, Withers DJ. The hypoxia response pathway and beta-cell function. Diabetes Obes Metab. 2010;12(Suppl 2):159–67. doi:10.1111/j.1463-1326.2010.01276.x.

    Article  CAS  PubMed  Google Scholar 

  101. Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81(9):1318–24. doi:10.1097/01.tp.0000203858.41105.88.

    Article  PubMed  Google Scholar 

  102. •• Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23. doi:10.1038/nbt.3211. The authors report that pre-vascularization of the subcutaneous implant site promote islet engraftment and function

    Article  CAS  PubMed  Google Scholar 

  103. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003;17(15):2260–2. doi:10.1096/fj.02-1041fje.

    CAS  Google Scholar 

  104. Sigrist S, Mechine-Neuville A, Mandes K, Calenda V, Braun S, Legeay G, et al. Influence of VEGF on the viability of encapsulated pancreatic rat islets after transplantation in diabetic mice. Cell Transplant. 2003;12(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  105. Khanna O, Huang JJ, Moya ML, Wu CW, Cheng MH, Opara EC, et al. FGF-1 delivery from multilayer alginate microbeads stimulates a rapid and persistent increase in vascular density. Microvasc Res. 2013;90:23–9. doi:10.1016/j.mvr.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  106. Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ. Oxygen producing biomaterials for tissue regeneration. Biomaterials. 2007;28(31):4628–34. doi:10.1016/j.biomaterials.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  107. Coronel MM, Geusz R, Stabler CL. Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial. Biomaterials. 2017;129:139–51. doi:10.1016/j.biomaterials.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  108. Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials. 2009;30(5):757–62. doi:10.1016/j.biomaterials.2008.09.065.

    Article  CAS  PubMed  Google Scholar 

  109. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A. 2013;110(47):19054–8. doi:10.1073/pnas.1317561110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A. 2012;109(11):4245–50. doi:10.1073/pnas.1113560109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Veriter S, Gianello P, Igarashi Y, Beaurin G, Ghyselinck A, Aouassar N, et al. Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates. Cell Transplant. 2014;23(11):1349–64. doi:10.3727/096368913X663550.

    Article  PubMed  Google Scholar 

  112. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43. doi:10.1016/j.biomaterials.2011.01.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21. doi:10.1038/nm1684.

    Article  CAS  PubMed  Google Scholar 

  114. Yamashita S, Ohashi K, Utoh R, Okano T, Yamamoto M. Human laminin isotype coating for creating islet cell sheets. Cell medicine. 2015;8(1–2):39–46. doi:10.3727/215517915X689029.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Llacua A, de Haan BJ, Smink SA, de Vos P. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J Biomed Mater Res A. 2016;104(7):1788–96. doi:10.1002/jbm.a.35706.

    Article  CAS  PubMed  Google Scholar 

  116. Arous C, Wehrle-Haller B. Role and impact of the extracellular matrix on integrin-mediated pancreatic beta-cell functions. Biol Cell. 2017; doi:10.1111/boc.201600076.

  117. Bosco D, Gonelle-Gispert C, Wollheim CB, Halban PA, Rouiller DG. Increased intracellular calcium is required for spreading of rat islet beta-cells on extracellular matrix. Diabetes. 2001;50(5):1039–46.

    Article  CAS  PubMed  Google Scholar 

  118. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19(5):646–51. doi:10.1038/nm.3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16(8):927–33. doi:10.1038/nm.2193.

    Article  CAS  PubMed  Google Scholar 

  120. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41. doi:10.1126/science.1189345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, et al. Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diabetes Sci Technol. 2014;8(1):159–69. doi:10.1177/1932296813519558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34(28):6760–72. doi:10.1016/j.biomaterials.2013.05.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Napierala H, Hillebrandt KH, Haep N, Tang P, Tintemann M, Gassner J, et al. Engineering an endocrine neo-pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific reports. 2017;7:41777. doi:10.1038/srep41777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34(22):5488–95. doi:10.1016/j.biomaterials.2013.03.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. •• Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas ME, et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann Surg. 2016;264(1):169–79. doi:10.1097/SLA.0000000000001364. This study represents the proof-of-principle of the potential use of human decellularized pancreas as biological scaffold supporting islet function

    Article  PubMed  PubMed Central  Google Scholar 

  126. de Vos P, Spasojevic M, Faas MM. Treatment of diabetes with encapsulated islets. Adv Exp Med Biol. 2010;670:38–53.

    Article  PubMed  Google Scholar 

  127. Jones KS, Sefton MV, Gorczynski RM. In vivo recognition by the host adaptive immune system of microencapsulated xenogeneic cells. Transplantation. 2004;78(10):1454–62.

    Article  PubMed  Google Scholar 

  128. Stephan MT, Irvine DJ. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today. 2011;6(3):309–25. doi:10.1016/j.nantod.2011.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials. 2017;114:71–81. doi:10.1016/j.biomaterials.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  130. Graham JG, Zhang X, Goodman A, Pothoven K, Houlihan J, Wang S, et al. PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng A. 2013;19(11–12):1465–75. doi:10.1089/ten.TEA.2012.0643.

    Article  CAS  Google Scholar 

  131. Marek N, Krzystyniak A, Ergenc I, Cochet O, Misawa R, Wang LJ, et al. Coating human pancreatic islets with CD4(+)CD25(high)CD127(−) regulatory T cells as a novel approach for the local immunoprotection. Ann Surg. 2011;254(3):512–518; discussion 8-9. doi:10.1097/SLA.0b013e31822c9ca7.

    Article  PubMed  Google Scholar 

  132. Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A. 2014;111(29):10514–9. doi:10.1073/pnas.1402216111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Teramura Y, Asif S, Ekdahl KN, Nilsson B. Cell surface engineering for regulation of immune reactions in cell therapy. Adv Exp Med Biol. 2015;865:189–209. doi:10.1007/978-3-319-18603-0_12.

    Article  CAS  PubMed  Google Scholar 

  134. • Weaver JD, Song Y, Yang EY, Ricordi C, Pileggi A, Buchwald P, et al. Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation. Tissue Eng A. 2015;21(15–16):2250–61. doi:10.1089/ten.TEA.2014.0487. This study showed that anti-inflammatory local treatment achieved through engineered biomaterials improved in vitro and in vivo islet function avoiding the broad side effects associated with systemic delivery

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Piemonti.

Ethics declarations

Conflict of Interest

Lorenzo Piemonti, Antonio Citro and Elisa Cantarelli declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cellular Transplants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantarelli, E., Citro, A. & Piemonti, L. Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation. Curr Transpl Rep 4, 169–183 (2017). https://doi.org/10.1007/s40472-017-0154-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-017-0154-9

Keywords

Navigation