Skip to main content

Advertisement

Log in

Current Perspectives on Cytomegalovirus in Heart Transplantation

  • Thoracic Transplantation (J Kobashigawa, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Cytomegalovirus (CMV) is the most common infectious agent in heart transplantation. Its peculiar features, including a complex interplay with host’s immune system and lifelong latency, have been associated with reduced graft survival by the development of manifestations of graft rejection, such as cardiac allograft vasculopathy. Modern antiviral agents have been effective in reducing the clinical impact of acute CMV syndromes, thus questioning the current role of the virus on chronic graft dysfunction. In this setting, prolonged universal antiviral prophylaxis may appear an easy and effective strategy to abolish the CMV issue in clinical practice. Nevertheless, several unanswered questions are still open: is CMV still involved in CAV development despite ganciclovir use? Do we have evidence that benefits from universal antiviral prophylaxis overcome costs and toxicities? Do we have anything new in the pipeline? In this article, we review the latest evidences unraveling the answers to these burning questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • of Importance •• of Major Importance

  1. Naraqi S. Cytomegalovirus. Textbook of human virology. St. Louis: Mosby-Year Book Inc.; 1991. p. 889–924.

    Google Scholar 

  2. Spyridopoulos I, Martin-Ruiz C, Hilkens C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell. 2016;15(2):389–92 In this study in general population investigators show the epidemiological association between CMV serology and cardiovascular risk by inducing immune system senescence.

    Article  CAS  PubMed  Google Scholar 

  3. Potena L, Holweg CT, Vana ML, et al. Frequent occult infection with cytomegalovirus in cardiac transplant recipients despite antiviral prophylaxis. J Clin Microbiol. 2007;45(6):1804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kotton CN, Kumar D, Caliendo AM, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2013;96(4):333–60.

    Article  CAS  PubMed  Google Scholar 

  5. Rowshani AT, Bemelman FJ, van Leeuwen EM, et al. Clinical and immunologic aspects of cytomegalovirus infection in solid organ transplant recipients. Transplantation. 2005;79(4):381–6.

    Article  PubMed  Google Scholar 

  6. Owers DS, Webster AC, Strippoli GF, et al. Pre-emptive treatment for cytomegalovirus viraemia to prevent cytomegalovirus disease in solid organ transplant recipients. The Cochrane database of systematic reviews. 2013;2:CD005133. doi:10.1002/14651858.CD005133.pub3 .Comprehensive and important systematic review analyzing the impact on prognosis of CMV pre-emptive strategy

    Google Scholar 

  7. Hodson EM, Ladhani M, Webster AC, et al. Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. The Cochrane database of systematic reviews. 2013;6:CD003774. doi:10.1002/14651858.CD003774.pub4 .Comprehensive and important systematic review analyzing the impact of anti-CMV prophylaxis on prognosis. This analysis allows comparisons between different prophylactic agents

    Google Scholar 

  8. Le Page AK, Jager MM, Kotton CN, et al. International survey of cytomegalovirus management in solid organ transplantation after the publication of consensus guidelines. Transplantation. 2013;95(12):1455–60. doi:10.1097/TP.0b013e31828ee12e.

    Article  PubMed  Google Scholar 

  9. Loebe M, Schuler S, Zais O, et al. Role of cytomegalovirus infection in the development of coronary artery disease in the transplanted heart. J Heart Lung Transplant. 1990;9:707–11.

    CAS  Google Scholar 

  10. Mc Donald K, Rector S, Braunlin E, et al. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am J Cardiol. 1989;64:359–62.

    Article  CAS  Google Scholar 

  11. Grattan M, Moreno-Cabral C, Starnes V, et al. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA. 1989;261:3561–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lemstrom K, Koskinen P, Krogerus L, et al. Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts after cytomegalovirus infection. Circulation. 1995;92:2594–604.

    Article  CAS  PubMed  Google Scholar 

  13. Lemstrom K, Sihvola R, Bruggeman C, et al. Cytomegalovirus infection-enhanced cardiac allograft vasculopathy is abolished by DHPG prophylaxis in the rat. Circulation. 1997;95(12):2614–6.

    Article  CAS  PubMed  Google Scholar 

  14. Valantine H, Gao S, Menon S, et al. Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis. A post hoc analysis of a randomized, placebo-controlled study. Circulation. 1999;100:61–6.

    Article  CAS  PubMed  Google Scholar 

  15. Gulizia JM, Kandolf R, Kendall TJ, et al. Infrequency of cytomegalovirus genome in coronary arteriopathy of human heart allografts. Am J Pathol. 1995;147(2):461–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahle WT, Fourshee MT, Naftel DM, et al. Does cytomegalovirus serology impact outcome after pediatric heart transplantation? J Heart Lung Transplant. 2009;28(12):1299–305. doi:10.1016/j.healun.2009.07.011.

    Article  PubMed  Google Scholar 

  17. Zakliczynski M, Krynicka-Mazurek A, Pyka L, et al. The influence of cytomegalovirus infection, confirmed by pp65 antigen presence, on the development of cardiac allograft vasculopathy. Transplant Proc. 2007;39(9):2866–9. doi:10.1016/j.transproceed.2007.09.013.

    Article  CAS  PubMed  Google Scholar 

  18. Zakliczynski M, Krynicka-Mazurek A, Konecka-Mrowka D, et al. Cytomegalovirus infection does not accelerate microvasculopathy development in heart transplant recipients. Transplant Proc. 2009;41(8):3219–21.

    Article  CAS  PubMed  Google Scholar 

  19. Luckraz H, Charman SC, Wreghitt T, et al. Does cytomegalovirus status influence acute and chronic rejection in heart transplantation during the ganciclovir prophylaxis era? J Heart Lung Transplant. 2003;22(9):1023–7.

    Article  PubMed  Google Scholar 

  20. Potena L, Holweg CT, Chin C, et al. Acute rejection and cardiac allograft vascular disease is reduced by suppression of subclinical cytomegalovirus infection. Transplantation. 2006;82(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  21. Potena L, Grigioni F, Ortolani P, et al. Relevance of cytomegalovirus infection and coronary-artery remodeling in the first year after heart transplantation: a prospective three-dimensional intravascular ultrasound study. Transplantation. 2003;75(6):839–43.

    Article  PubMed  Google Scholar 

  22. Delgado JF, Reyne AG, de Dios S, et al. Influence of cytomegalovirus infection in the development of cardiac allograft vasculopathy after heart transplantation. J Heart Lung Transplant. 2015;34(8):1112–9. doi:10.1016/j.healun.2015.03.015 .Current analysis associating CMV infection to CAV development in the current era of ganciclovir prophylaxis

    Article  PubMed  Google Scholar 

  23. Lisboa LF, Tong Y, Kumar D, et al. Analysis and clinical correlation of genetic variation in cytomegalovirus. Transpl Infect Dis. 2012;14(2):132–40. doi:10.1111/j.1399-3062.2011.00685.x.

    Article  CAS  PubMed  Google Scholar 

  24. Kaminski H, Fishman JA. The cell biology of cytomegalovirus: implications for transplantation. Am J Transplant. 2016;16(8):2254–69. doi:10.1111/ajt.13791 .Comprehensive and very well written review article reporting up-to-date biological effects of CMV in the context of solido organ transplantation

    Article  CAS  PubMed  Google Scholar 

  25. Renzette N, Pokalyuk C, Gibson L, et al. Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci U S A. 2015;112(30):E4120–8. doi:10.1073/pnas.1501880112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mocarski Jr ES. Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol. 2002;10(7):332–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kudchodkar SB, Yu Y, Maguire TG, et al. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol. 2004;78(20):11030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. CID. 2002;34:1094–7.

    Article  Google Scholar 

  29. Johansson I, Andersson R, Friman V, et al. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients. BMC Infect Dis. 2015;15:582. doi:10.1186/s12879-015-1321-1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sedmak DD, Knight DA, Vook NC, et al. Divergent patterns of ELAM-1, ICAM-1, and VCAM-1 expression on cytomegalovirus-infected endothelial cells. Transplantation. 1994;58(12):1379–85.

    CAS  PubMed  Google Scholar 

  31. Knight DA, Waldman WJ, Sedmak DD. Cytomegalovirus-mediated modulation of adhesion molecule expression by human arterial and microvascular endothelial cells. Transplantation. 1999;68(11):1814–8.

    Article  CAS  PubMed  Google Scholar 

  32. Waldman WJ, Knight DA. Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells. Am J Pathol. 1996;148(1):105–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Almeida GD, Porada CD, St Jeor S, et al. Human cytomegalovirus alters interleukin-6 production by endothelial cells. Blood. 1994;83(2):370–6.

    CAS  PubMed  Google Scholar 

  34. Smith PD, Saini SS, Raffeld M, et al. Cytomegalovirus induction of tumor necrosis factor-alpha by human monocytes and mucosal macrophages. J Clin Invest. 1992;90(5):1642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Streblow DN, Dumortier J, Moses AV, et al. Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol. 2008;325:397–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Streblow DN, Kreklywich CN, Andoh T, et al. The role of angiogenic and wound repair factors during CMV-accelerated transplant vascular sclerosis in rat cardiac transplants. Am J Transplant. 2008;8(2):277–87.

    Article  CAS  PubMed  Google Scholar 

  37. Mocarski E. Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol. 2004;6(8):707–17.

    Article  CAS  PubMed  Google Scholar 

  38. Melnychuk RM, Smith P, Kreklywich CN, et al. Mouse cytomegalovirus M33 is necessary and sufficient in virus-induced vascular smooth muscle cell migration. J Virol. 2005;79(16):10788–95. doi:10.1128/JVI.79.16.10788-10795.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Streblow DN, Kreklywich CN, Smith P, et al. Rat cytomegalovirus-accelerated transplant vascular sclerosis is reduced with mutation of the chemokine-receptor R33. Am J Transplant. 2005;5(3):436–42. doi:10.1111/j.1600-6143.2004.00711.x.

    Article  CAS  PubMed  Google Scholar 

  40. Kobashigawa J, Ross H, Bara C, et al. Everolimus is associated with a reduced incidence of cytomegalovirus infection following de novo cardiac transplantation. Transpl Infect Dis. 2013;15(2):150–62. doi:10.1111/tid.12007.

    Article  CAS  PubMed  Google Scholar 

  41. Potena L, Frascaroli G, Grigioni F, et al. Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells. Circulation. 2004;109(4):532–6.

    Article  CAS  PubMed  Google Scholar 

  42. Streblow DN, van Cleef KW, Kreklywich CN, et al. Rat cytomegalovirus gene expression in cardiac allograft recipients is tissue specific and does not parallel the profiles detected in vitro. J Virol. 2007;81(8):3816–26. doi:10.1128/JVI.02425-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. TC W, Hruban RH, Ambinder RF, et al. Demonstration of cytomegalovirus nucleic acids in the coronary arteries of transplanted hearts. Am J Pathol. 1992;140(3):739–47.

    Google Scholar 

  44. Orloff SL, Streblow DN, Soderberg-Naucler C, et al. Elimination of donor-specific alloreactivity prevents cytomegalovirus-accelerated chronic rejection in rat small bowel and heart transplants. Transplantation. 2002;73(5):679–88.

    Article  PubMed  Google Scholar 

  45. Landais I, Nelson JA. Functional genomics approaches to understand cytomegalovirus replication, latency and pathogenesis. Current opinion in virology. 2013;3(4):408–15. doi:10.1016/j.coviro.2013.06.002 .Review article analyzing the novel approaches of functional genomics in the biology of CMV infection. Herein the latest theories supporting the impact of latent infection are comprehensively described

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orloff SL, Hwee YK, Kreklywich C, et al. Cytomegalovirus latency promotes cardiac lymphoid neogenesis and accelerated allograft rejection in CMV naive recipients. Am J Transplant. 2011;11(1):45–55. doi:10.1111/j.1600-6143.2010.03365.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horne B, Muhlestein J, Carlquist J, et al. Statin therapy interacts with cytomegalovirus seropositivity and high c-reactive protein in reducing mortality among patients with angiographically significant coronary disease. Circulation. 2003;107:258–63.

    Article  CAS  PubMed  Google Scholar 

  48. Shmeleva EV, Boag SE, Murali S, et al. Differences in immune responses between CMV-seronegative and -seropositive patients with myocardial ischemia and reperfusion. Immunity, inflammation and disease. 2015;3(2):56–70. doi:10.1002/iid3.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stern M, Hirsch H, Cusini A, et al. Cytomegalovirus serology and replication remain associated with solid organ graft rejection and graft loss in the era of prophylactic treatment. Transplantation. 2014;98(9):1013–8. doi:10.1097/TP.0000000000000160 .Registry analysis showing the impact of CMV lytic and latent infection on post-transplant outcomes despite prophylaxis

    Article  CAS  PubMed  Google Scholar 

  50. Preiksaitis JK, Brennan DC, Fishman J, et al. Canadian society of transplantation consensus workshop on cytomegalovirus management in solid organ transplantation final report. Am J Transplant. 2005;5(2):218–27.

    Article  PubMed  Google Scholar 

  51. Khoury JA, Storch GA, Bohl DL, et al. Prophylactic versus preemptive oral valganciclovir for the management of cytomegalovirus infection in adult renal transplant recipients. Am J Transplant. 2006;6(9):2134–43.

    Article  CAS  PubMed  Google Scholar 

  52. Potena L, Grigioni F, Magnani G, et al. Prophylaxis versus preemptive anti-cytomegalovirus approach for prevention of allograft vasculopathy in heart transplant recipients. J Heart Lung Transplant. 2009;28(5):461–7.

    Article  PubMed  Google Scholar 

  53. Manuel O, Kralidis G, Mueller NJ, et al. Impact of antiviral preventive strategies on the incidence and outcomes of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant. 2013;13(9):2402–10. doi:10.1111/ajt.12388 .Registry analysis supporting the superiority on graft survival of prophylaxis over pre-emptive strategy

    Article  CAS  PubMed  Google Scholar 

  54. Zuk DM, Humar A, Weinkauf JG, et al. An international survey of cytomegalovirus management practices in lung transplantation. Transplantation. 2010. doi:10.1097/TP.0b013e3181ea3955.

    PubMed  Google Scholar 

  55. Humar A, Lebranchu Y, Vincenti F, et al. The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients. Am J Transplant. 2010;10(5):1228–37. doi:10.1111/j.1600-6143.2010.03074.x.

    Article  CAS  PubMed  Google Scholar 

  56. Palmer SM, Limaye AP, Banks M, et al. Extended valganciclovir prophylaxis to prevent cytomegalovirus after lung transplantation: a randomized, controlled trial. Ann Intern Med. 2010;152(12):761–9. doi:10.1059/0003-4819-152-12-201006150-00003.

    Article  PubMed  Google Scholar 

  57. Sun HY, Wagener MM, Singh N. Prevention of posttransplant cytomegalovirus disease and related outcomes with valganciclovir: a systematic review. Am J Transplant. 2008;8(10):2111–8.

    Article  PubMed  Google Scholar 

  58. Reischig T, Hribova P, Jindra P, et al. Long-term outcomes of pre-emptive valganciclovir compared with valacyclovir prophylaxis for prevention of cytomegalovirus in renal transplantation. J Am Soc Nephrol. 2012;23(9):1588–97. doi:10.1681/ASN.2012010100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santos CA, Brennan DC, Fraser VJ, et al. Incidence, risk factors, and outcomes of delayed-onset cytomegalovirus disease in a large, retrospective cohort of heart transplant recipients. Transplant Proc. 2014;46(10):3585–92. doi:10.1016/j.transproceed.2014.08.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paya C, Humar A, Dominguez E, et al. Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant. 2004;4(4):611–20.

    Article  CAS  PubMed  Google Scholar 

  61. Kalil AC, Freifeld AG, Lyden ER, et al. Valganciclovir for cytomegalovirus prevention in solid organ transplant patients: an evidence-based reassessment of safety and efficacy. PLoS One. 2009;4(5):e5512. doi:10.1371/journal.pone.0005512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perciaccante B, Bianchi G, Potena L, et al. Everolimus and valganciclovir prophylaxis: how to chase CMV but not the patient: insights from PROTECT randomized study. J Heart Lung Transpl. 2015;34(4):S305–S05.

    Article  Google Scholar 

  63. Gagermeier JP, Rusinak JD, Lurain NS, et al. Subtherapeutic ganciclovir (GCV) levels and GCV-resistant cytomegalovirus in lung transplant recipients. Transpl Infect Dis. 2014;16(6):941–50. doi:10.1111/tid.12317 .Very well conducted observational paper showing the importance of achieving therapeutic drug levels to avoid ganciclovir resistance

    Article  CAS  PubMed  Google Scholar 

  64. Singh N. Antiviral drugs for cytomegalovirus in transplant recipients: advantages of preemptive therapy. Rev Med Virol. 2006;16(5):281–7.

    Article  CAS  PubMed  Google Scholar 

  65. Emery VC. Prophylaxis for CMV should not now replace pre-emptive therapy in solid organ transplantation. Rev Med Virol. 2001;11(2):83–6.

    Article  CAS  PubMed  Google Scholar 

  66. Snydman DR. The case for cytomegalovirus prophylaxis in solid organ transplantation. Rev Med Virol. 2006;16(5):289–95.

    Article  PubMed  Google Scholar 

  67. Kotton CN, Kumar D, Caliendo AM, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89(7):779–95.

    Article  PubMed  Google Scholar 

  68. Gerna G, Baldanti F, Torsellini M, et al. Evaluation of cytomegalovirus DNAaemia versus pp65-antigenaemia cutoff for guiding preemptive therapy in transplant recipients: a randomized study. Antivir Ther. 2007;12(1):63–72.

    CAS  PubMed  Google Scholar 

  69. Sanghavi SK, Abu-Elmagd K, Keightley MC, et al. Relationship of cytomegalovirus load assessed by real-time PCR to pp65 antigenemia in organ transplant recipients. J Clin Virol. 2008;42(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  70. Martin-Gandul C, Perez-Romero P, Sanchez M, et al. Determination, validation and standardization of a CMV DNA cut-off value in plasma for preemptive treatment of CMV infection in solid organ transplant recipients at lower risk for CMV infection. J Clin Virol. 2013;56(1):13–8. doi:10.1016/j.jcv.2012.09.017.

    Article  CAS  PubMed  Google Scholar 

  71. Gerna G, Lilleri D, Rognoni V, et al. Preemptive therapy for systemic and pulmonary human cytomegalovirus infection in lung transplant recipients. Am J Transplant. 2009;9(5):1142–50.

    Article  CAS  PubMed  Google Scholar 

  72. Emery VC, Sabin CA, Cope AV, et al. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet. 2000;355(9220):2032–6.

    Article  CAS  PubMed  Google Scholar 

  73. Lilleri D, Lazzarotto T, Ghisetti V, et al. Multicenter quality control study for human cytomegalovirus DNAemia quantification. New Microbiol. 2009;32(3):245–53.

    PubMed  Google Scholar 

  74. Pang XL, Fox JD, Fenton JM, et al. Interlaboratory comparison of cytomegalovirus viral load assays. Am J Transplant. 2009;9(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  75. Hayden RT, Preiksaitis J, Tong Y, et al. Commutability of the first World Health Organization international standard for human cytomegalovirus. J Clin Microbiol. 2015;53(10):3325–33. doi:10.1128/JCM.01495-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Durante-Mangoni E, Andini R, Pinto D, et al. Effect of the immunosuppressive regimen on the incidence of cytomegalovirus infection in 378 heart transplant recipients: a single Centre, prospective cohort study. J Clin Virol. 2015;68:37–42. doi:10.1016/j.jcv.2015.04.017.

    Article  CAS  PubMed  Google Scholar 

  77. Asberg A, Jardine AG, Bignamini AA, et al. Effects of the intensity of immunosuppressive therapy on outcome of treatment for CMV disease in organ transplant recipients. Am J Transplant. 2010;10(8):1881–8. doi:10.1111/j.1600-6143.2010.03114.x.

    Article  CAS  PubMed  Google Scholar 

  78. Andrassy J, Hoffmann VS, Rentsch M, et al. Is cytomegalovirus prophylaxis dispensable in patients receiving an mTOR inhibitor-based immunosuppression? A systematic review and meta-analysis. Transplantation. 2012;94(12):1208–17. doi:10.1097/TP.0b013e3182708e56.

    Article  CAS  PubMed  Google Scholar 

  79. Schoeppler KE, Lyu DM, Grazia TJ, et al. Late-onset cytomegalovirus (CMV) in lung transplant recipients: can CMV serostatus guide the duration of prophylaxis? Am J Transplant. 2013;13(2):376–82. doi:10.1111/j.1600-6143.2012.04339.x.

    Article  CAS  PubMed  Google Scholar 

  80. Yamani MH, Avery R, Mawhorter SD, et al. The impact of CytoGam on cardiac transplant recipients with moderate hypogammaglobulinemia: a randomized single-center study. J Heart Lung Transplant. 2005;24(11):1766–9. doi:10.1016/j.healun.2004.11.016.

    Article  PubMed  Google Scholar 

  81. Carbone J. The immunology of posttransplant CMV infection: potential effect of CMV immunoglobulins on distinct components of the immune response to CMV. Transplantation. 2016;100(3S-1):S11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumar D, Chernenko S, Moussa G, et al. Cell-mediated immunity to predict cytomegalovirus disease in high-risk solid organ transplant recipients. Am J Transplant. 2009;9(5):1214–22. doi:10.1111/j.1600-6143.2009.02618.x.

    Article  CAS  PubMed  Google Scholar 

  83. Westall GP, Cristiano Y, Peleg AY, et al. Interim analysis: a study of QuantiFERON-CMV-directed CMV prophylaxis versus standard-of-care to reduce late CMV reactivation in patients undergoing lung transplantation. The Journal of Heart and Lung Transplantation. 2016;35(4):S105. doi:10.1016/j.healun.2016.01.289.

    Article  Google Scholar 

  84. Potena L, Solidoro P, Patrucco F, et al. Treatment and prevention of cytomegalovirus infection in heart and lung transplantation: an update. Expert Opin Pharmacother. 2016;17(12):1611–22.

    Article  CAS  PubMed  Google Scholar 

  85. Egli A, Humar A, Kumar D. State-of-the-art monitoring of cytomegalovirus-specific cell-mediated immunity after organ transplant: a primer for the clinician. Clin Infect Dis. 2012;55(12):1678–89. doi:10.1093/cid/cis818 .Comprehensive review analyzing all the available tools to monitor CMV specific immunity in clinical practice and in research setting

    Article  CAS  PubMed  Google Scholar 

  86. Manuel O, Husain S, Kumar D, et al. Assessment of cytomegalovirus-specific cell-mediated immunity for the prediction of cytomegalovirus disease in high-risk solid-organ transplant recipients: a multicenter cohort study. Clin Infect Dis. 2013;56(6):817–24.

    Article  CAS  PubMed  Google Scholar 

  87. Lisboa LF, Kumar D, Wilson LE, et al. Clinical utility of cytomegalovirus cell-mediated immunity in transplant recipients with cytomegalovirus viremia. Transplantation. 2012;93(2):195–200. doi:10.1097/TP.0b013e31823c1cd4.

    Article  PubMed  Google Scholar 

  88. Gerna G, Lilleri D, Fornara C, et al. Monitoring of human cytomegalovirus-specific CD4 and CD8 T-cell immunity in patients receiving solid organ transplantation. Am J Transplant. 2006;6(10):2356–64.

    Article  CAS  PubMed  Google Scholar 

  89. Dechanet J, Merville P, Lim A, et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999;103(10):1437–49. doi:10.1172/JCI5409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaminski H, Garrigue I, Couzi L, et al. Surveillance of gammadelta T cells predicts cytomegalovirus infection resolution in kidney transplants. J Am Soc Nephrol. 2016;27(2):637–45. doi:10.1681/ASN.2014100985 .This paper shows a novel approach to monitor physiological CMV immunity in transplant recipient that may lead to changes in clinical practice

    Article  PubMed  Google Scholar 

  91. Couzi L, Pitard V, Moreau JF, et al. Direct and indirect effects of cytomegalovirus-induced gammadelta T cells after kidney transplantation. Front Immunol. 2015;6:3. doi:10.3389/fimmu.2015.00003 .Important review article to understand the role og gammadelta T cells

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Griffiths P, Lumley S. Cytomegalovirus. Curr Opin Infect Dis. 2014;27(6):554–9. doi:10.1097/QCO.0000000000000107.

    Article  CAS  PubMed  Google Scholar 

  93. Winston DJ, Saliba F, Blumberg E, et al. Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, double-blind, multicenter controlled trial. Am J Transplant. 2012;12(11):3021–30. doi:10.1111/j.1600-6143.2012.04231.x.

    Article  CAS  PubMed  Google Scholar 

  94. Marty FM, Winston DJ, Rowley SD, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med. 2013;369(13):1227–36. doi:10.1056/NEJMoa1303688.

    Article  CAS  PubMed  Google Scholar 

  95. Chemaly RF, Ullmann AJ, Stoelben S, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med. 2014;370(19):1781–9. doi:10.1056/NEJMoa1309533.

    Article  CAS  PubMed  Google Scholar 

  96. Plotkin S. The history of vaccination against cytomegalovirus. Med Microbiol Immunol. 2015;204(3):247–54. doi:10.1007/s00430-015-0388-z.

    Article  CAS  PubMed  Google Scholar 

  97. Griffiths P, Plotkin S, Mocarski E, et al. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013;31(Suppl 2):B197–203. doi:10.1016/j.vaccine.2012.10.074.

    Article  PubMed  Google Scholar 

  98. Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet. 2011;377(9773):1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rieder F, Steininger C. Cytomegalovirus vaccine: phase II clinical trial results. Clin Microbiol Infect. 2014;20(Suppl 5):95–102. doi:10.1111/1469-0691.12449.

    Article  CAS  PubMed  Google Scholar 

  100. Streblow DN, Hwee YK, Kreklywich CN, et al. Rat cytomegalovirus vaccine prevents accelerated chronic rejection in CMV-naive recipients of infected donor allograft hearts. Am J Transplant. 2015;15(7):1805–16. doi:10.1111/ajt.13188 .Intriguing animal model supporting the efficacy of a CMV vaccine and of adoptive immunity transfer to reduce the impact of CMV infection on allograft vasculopathy

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Potena.

Ethics declarations

Conflict of Interest

Luciano Potena reports grants, personal fees and non-financial support from Qiagen, personal fees from Biotest, grants and personal fees from Novartis, outside the submitted work.

Marco Masetti reports grants from Qiagen, outside the submitted work.

Luciano Potena and Francesco Grigioni hold institutional grants from Qiagen.

Antonio Russo declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Thoracic Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potena, L., Masetti, M., Russo, A. et al. Current Perspectives on Cytomegalovirus in Heart Transplantation. Curr Transpl Rep 3, 358–366 (2016). https://doi.org/10.1007/s40472-016-0121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0121-x

Keywords

Navigation