Skip to main content

Advertisement

Log in

Potential of Tolerogenic Dendritic Cells in Transplantation

  • Cellular Transplants (J Grinyó, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Dendritic cells (DC) are the most important subset of antigen presenting cells (APC) that are able to polarize the immune response to pro-inflammatory or anti-inflammatory response. This duality places DC in the axis between tolerance and immunogenicity. The regulation of polarization is the key point in autoimmune diseases and organ transplantation. In order to manipulate this duality, DC have been generated ex vivo with a tolerogenic or immunogenic profile since several years. During the last decade, cell therapy using tolerogenic DC (TolDC) has been shown to be safe and effective both in autoimmune diseases and transplantation models in animals. Since 2011, recipient TolDC has been tested in clinical trials in type 1 diabetes, rheumatoid arthritis and Crohn’s diseases with favourable results in terms of safety. Indeed, other clinical trials are ongoing including a phase I/II clinical assay in kidney transplantation. In this review, we will discuss the potential of TolDC that has been demonstrated in animal models and used in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IL:

Interleukin

TGF-β:

Transforming growth factor-beta

CD:

Cluster of differentiation

DEC:

Dendritic and epithelial cells

MHC:

Major histocompatibility complex

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B-cells

AAV:

Adeno-associated virus

PD-1:

Programmed cell death protein-1

PDL-1:

Programmed cell death ligand-1

IFN-γ:

Interferon gamma

HLA:

Human leukocyte antigen

CTLA-4:

Cytotoxic T-lymphocyte associated protein 4

LAG-3:

lymphocyte-activation gene-3

Th:

T-cell helper

MOG:

Myelin oligodendrocyte glycoprotein

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974;139:380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mbongue J, Nicholas D, Firek A, Langridge W. The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res. 2014;2014:857143.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol. 2013;4:1–14.

    Article  CAS  Google Scholar 

  5. Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol. 2011;23:252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohnmacht C, Pullner A, King SBS, Drexler I, Meier S, Brocker T, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009;206:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butterfield LH. Dendritic cells in cancer immunotherapy clinical trials: are we making progress? Front Immunol. 2013;4:452.

    Article  Google Scholar 

  8. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol. 2010;108:111-65.

  9. Yang J, Bernier SM, Ichim TE, Li M, Xia X, Zhou D, et al. LF15-0195 generates tolerogenic dendritic cells by suppression of NF-kB signaling through inhibition of IKK activity that inhibited Th1 polarization and increased Th2. J Leukoc Biol. 2003;74:438–47.

  10. Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;241:5–19.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson AG, Thomas R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol. 2002;80:509–19.

    Article  PubMed  Google Scholar 

  12. Faivre V, Lukaszewicz AC, Alves A, Charron D, Payen D, Haziot A. Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis. PLoS One. 2012;7:e47209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Louvet C, Chiffoleau E, Heslan M, Tesson L, Heslan J-M, Brion R, et al. Identification of a new member of the CD20/FceRIb family overexpressed in tolerated allografts. Am J Transplant. 2005;5:2143–53.

    Article  CAS  PubMed  Google Scholar 

  14. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108:1435–40.

    Article  CAS  PubMed  Google Scholar 

  15. Gaudreau S, Guindi C, Ménard M, Besin G, Dupuis G, Amrani A. Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4+CD25+ regulatory T cells. J Immunol. 2007;179:3638–47.

    Article  CAS  PubMed  Google Scholar 

  16. Naranjo-Gómez M, Raïch-Regué D, Oñate C, Grau-López L, Ramo-Tello C, Pujol-Borrell R, et al. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med. 2011;9:89.

  17. Moreau A, Varey E, Bouchet-Delbos L, Cuturi MC. Cell therapy using tolerogenic dendritic cells in transplantation. Transplant Res. 2012;1:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang H, Dawicki W, Zhang X, Town J, Gordon JR. Tolerogenic dendritic cells induce CD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25−/loFoxp3 effector T cells. J Immunol. 2010;185:5003–10.

    Article  CAS  PubMed  Google Scholar 

  19. Torres-Aguilar H, Aguilar-Ruiz SR, González-Pérez G, Munguía R, Bajaña S, Meraz-Ríos M a, et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J. Immunol. 2010;184:1765–75.

  20. Mansilla MJ, Sellès-Moreno C, Fàbregas-Puig S, Amoedo J, Navarro-Barriuso J, Teniente-Serra A, et al. Beneficial effect of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoimmune encephalomyelitis. CNS Neurosci Ther. 2015;21:222–30.

    Article  CAS  PubMed  Google Scholar 

  21. Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T Cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178:7018–31.

    Article  CAS  PubMed  Google Scholar 

  22. Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol. 2004;173:4331–41.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu M, Wei MF, Liu F, Shi HF, Wang G. Interleukin-10 modified dendritic cells induce allo-hyporesponsiveness and prolong small intestine allograft survival. World J Gastroenterol. 2003;9:2509–12.

    PubMed  PubMed Central  Google Scholar 

  24. Lutz MB, Suri RM, Niimi M, Ogilvie ALJ, Kukutsch NA, Rössner S, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol. 2000;30:1813–22.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher MP, Kelly PJ, Jardine M, Perkovic V, Cass A, Craig JC, et al. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J Am Soc Nephrol. 2010;21:852–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herrera OB, Golshayan D, Tibbott R, Ochoa FS, James MJ, Marelli-Berg FM, et al. A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 2004;173:4828–37.

    Article  CAS  PubMed  Google Scholar 

  27. Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl TE, et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation. 1996;62:659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DePaz H a, Oluwole OO, Adeyeri AO, Witkowski P, Jin MX, Hardy MA, et al. Immature rat myeloid dendritic cells generated in low-dose granulocyte macrophage-colony stimulating factor prolong donor-specific rat cardiac allograft survival. Transplantation. 2003;75:521–8.

  29. Divito SJ, Wang Z, Shufesky WJ, Liu Q, Tkacheva OA, Montecalvo A, et al. Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood. 2010;116:2694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rainienė T, Izvolskaja N, Dainys B, Kučinskis G, Razukas V. Donor-specific transfusions as a way of tolerance induction to living donor kidney transplant. Biologija. 2009;55:99–104.

    Article  Google Scholar 

  31. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med. 2006;203:1851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pêche H, Trinité B, Martinet B, Cuturi MC. Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant. 2005;5:255–67.

    Article  PubMed  Google Scholar 

  33. Bériou G, Pêche H, Guillonneau C, Merieau E, Cuturi MC. Donor-specific allograft tolerance by administration of recipient-derived immature dendritic cells and suboptimal immunosuppression. Transplantation. 2005;79:969–72.

    Article  PubMed  Google Scholar 

  34. Baas MC, Kuhn C, Valette F, Mangez C, Duarte MS, Hill M, et al. Combining autologous dendritic cell therapy with CD3 antibodies promotes regulatory T cells and permanent islet allograft acceptance. J Immunol. 2014;193:4696–703.

    Article  CAS  PubMed  Google Scholar 

  35. Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am J Transplant. 2005;5:228–36.

    Article  CAS  PubMed  Google Scholar 

  36. Moreau A, Vandamme C, Segovia M, Devaux M, Guilbaud M, Tilly G, et al. Generation and in vivo evaluation of IL10-treated dendritic cells in a nonhuman primate model of AAV-based gene transfer. Mol Ther — Methods Clin Dev. 2014;1:14028.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moreau A, Chiffoleau E, Beriou G, Deschamps J-Y, Heslan M, Ashton-Chess J, et al. Superiority of bone marrow-derived dendritic cells over monocyte-derived ones for the expansion of regulatory T cells in the Macaque. Transplantation. 2008;85:1351–6.

  38. Chikuma S, Terawaki S, Hayashi T, Nabeshima R, Yoshida T, Shibayama S, et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo. J Immunol. 2009;182:6682–9.

    Article  CAS  PubMed  Google Scholar 

  39. Huang H, Ma Y, Dawicki W, Zhang X, Gordon JR. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. J Immunol. 2013;191:1136–43.

    Article  CAS  PubMed  Google Scholar 

  40. Baatar D, Olkhanud P, Sumitomo K, Taub D, Gress R, Biragyn A. Human peripheral blood T regulatory cells (Tregs), functionally primed CCR4+ Tregs and unprimed CCR4 Tregs, regulate effector T cells using FasL. J Immunol. 2007;178:4891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schinnerling K, García-González P, Aguillón JC. Gene expression profiling of human monocyte-derived dendritic cells—searching for molecular regulators of tolerogenicity. Front Immunol. 2015;6:1–10.

    Article  Google Scholar 

  42. Awasthi A, Carrier Y, Peron JPS, Bettelli E, Kamanaka M, Flavell RA, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol. 2007;8:1380–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, et al. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol. 2007;37:3054–62.

    Article  CAS  PubMed  Google Scholar 

  44. Moreau a, Hill M, Thébault P, Deschamps JY, Chiffoleau E, Chauveau C, et al. Tolerogenic dendritic cells actively inhibit T cells through heme oxygenase-1 in rodents and in nonhuman primates. FASEB J. 2009;23:3070–7.

  45. Hill M, Thebault P, Segovia M, Louvet C, Bériou G, Tilly G, et al. Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and Epstein-Barr virus-induced gene 3. Am J Transplant. 2011;11:2036–45.

    Article  CAS  PubMed  Google Scholar 

  46. Dixon KO, van der Kooij SW, Vignali DAA, van Kooten C. Human tolerogenic dendritic cells produce IL-35 in the absence of other IL-12 family members. Eur J Immunol. 2015;45:1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10 – dependent ILT4 / HLA-G pathway. Blood. 2010;116:935–44.

    Article  CAS  PubMed  Google Scholar 

  48. Svajger U, Rozman P. Tolerogenic dendritic cells: molecular and cellular mechanisms in transplantation. J Leukoc Biol. 2014;95:53–69.

    Article  PubMed  Google Scholar 

  49. Zou T, Caton AJ, Koretzky GA, Kambayashi T. Dendritic cells induce regulatory T cell proliferation through antigen-dependent and -independent interactions. J Immunol. 2010;185:2790–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mahnke K, Johnson TS, Ring S, Enk AH. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci Elsevier. 2016;46:159–67.

    Article  Google Scholar 

  51. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105:10113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsu SM, Mathew R, Taylor AW, Stein-Streilein J. Ex-vivo tolerogenic F4/80+ antigen-presenting cells (APC) induce efferent CD8+ regulatory T cell-dependent suppression of experimental autoimmune uveitis. Clin Exp Immunol. 2014;176:37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qian L, Qian C, Chen Y, Bai Y, Bao Y, Lu L, et al. Regulatory dendritic cells program B cells to differentiate into CD19hi FcgIIb hi regulatory B cells through IFN-b and CD40L. Blood. 2012;120:581–91.

  54. Yang H, Cheng EY, Sharma VK, Lagman M, Chang C, Song P, et al. Dendritic cells with TGF-b1 and IL-2 differentiate naïve CD4+ T cells into alloantigen specific and allograft protective FoxP3 regulatory T cells. Transplantation. 2012;93:580–8.

  55. Beres AJ, Drobyski WR. The role of regulatory T cells in the biology of graft versus host disease. Front Immunol. 2013;4:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19:739–46.

  57. Vicente R, Quentin J, Mausset-Bonnefont AL, Chuchana P, Martire D, Cren M, et al. Nonclassical CD4+CD49b+ regulatory T cells as a better alternative to conventional CD4+CD25+ T cells to dampen arthritis severity. J Immunol. 2016;196:298–309.

    Article  CAS  PubMed  Google Scholar 

  58. Gagliani N, Jofra T, Valle A, Stabilini A, Morsiani C, Gregori S, et al. Transplant tolerance to pancreatic islets is initiated in the graft and sustained in the spleen. Am J Transplant. 2013;13:1963–75.

    Article  CAS  PubMed  Google Scholar 

  59. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood. 2002;100:174–7.

  60. Ezzelarab MB, Lu L, Guo H, Zahorchak AF, Shufesky WF, Cooper DKC, et al. Eomesoderminlo CTLA4hi alloreactive CD8+ memory T cells are associated with prolonged renal transplant survival induced by regulatory dendritic cell infusion in CTLA4 immunoglobulin-treated nonhuman primates. Transplantation. 2016;100:91–102.

    Article  CAS  PubMed  Google Scholar 

  61. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (Safety) Study of autologous tolerogenic dendritic cells in Type 1 diabetic patients. Diabetes Care. 2011;34:2026–32. First clinical study using TolDC. This study showed the safety of TolDC in type-1 diabetes patients.

  62. Stoop JN, Harry RA, Von Delwig A, Isaacs JD, Robinson JH, Hilkens CMU. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum. 2010;62:3656–65.

    Article  PubMed  Google Scholar 

  63. Hermansson A, Johansson DK, Ketelhuth DFJ, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation. 2011;123:1083–91.

    Article  CAS  PubMed  Google Scholar 

  64. Li H, Wang C-C, Zhang M, Li X-L, Zhang P, Yue L-T, et al. Statin-modified dendritic cells regulate humoral immunity in experimental autoimmune myasthenia gravis. Mol. Cell. Neurosci. 2015;68:284–92.

  65. Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR, et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci U S A. 1995;92:8078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest. 1999;104:173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193:233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49:124–32.

    Article  PubMed  Google Scholar 

  69. Gowans EJ, Roberts S, Jones K, Dinatale I, Latour PA, Chua B, et al. A phase i clinical trial of dendritic cell immunotherapy in HCV-infected individuals. J. Hepatol. 2010;53:599–607.

  70. Di Caro V, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One. 2014;9:e83575.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients. Sci. Transl. Med. 2015;7:290ra87–290ra87. First clinical trial using TolDC in remitting-relapsing multiple sclerosis. This study showed the safety of TolDC in patients with RR-MS disease. The authors observed biological activity.

  72. Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C, et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study. J. Crohns. Colitis. 2015;9:1071–8. First clinical trial using TolDC in Crohn’s disease. This study showed the safety of TolDC in patients with refractory Crohn’s disease.

  73. Cabezón R, Ricart E, España C, Panés J, Benitez-Ribas D. Gram-negative enterobacteria induce tolerogenic maturation in dexamethasone conditioned dendritic cells. PLoS One. 2012;7:e52456.

  74. Raïch-Regué D, Grau-López L, Naranjo-Gómez M, Ramo-Tello C, Pujol-Borrell R, Martínez-Cáceres E, et al. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur J Immunol. 2012;42:771–82.

    Article  Google Scholar 

  75. Moreau A, Varey E, Bériou G, Hill M, Bouchet-Delbos L, Segovia M, et al. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Front Immunol. 2012;3:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Geissler EK, The ONE. Study compares cell therapy products in organ transplantation: introduction to a review series on suppressive monocyte-derived cells. Transplant Res. 2012;1:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work performed in the INSERM Unit 1064 and presented in this review was funded by IMBIO-DC, Fondation Progreffe, DHU Oncogreffe, The ONE Study (FP7-260687) and BIODRIM (FP7-305147) European Union 7th Framework Programs. The work of INSERM U1064 was also supported by funds from IHU-CESTI (Investissement d’Avenir ANR-10-IBHU-005, Région Pays de la Loire and Nantes Métropole) and the Labex IGO project (n° ANR-11-LABX-0016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Moreau.

Ethics declarations

Conflict of Interest

Maria Cristina Cuturi, Eros Marín and Aurélie Moreau declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cellular Transplants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, E., Cuturi, M.C. & Moreau, A. Potential of Tolerogenic Dendritic Cells in Transplantation. Curr Transpl Rep 3, 227–235 (2016). https://doi.org/10.1007/s40472-016-0109-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0109-6

Keywords

Navigation