Skip to main content
Log in

Preliminary Moho depth determination from receiver function analysis using AlpArray stations in Hungary

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Receiver function analysis is applied to the western part of the Pannonian Basin, a rather complex region both geologically and geodynamically. Previous receiver function analyses in this region had to deal with much smaller station density and time span than those available to us. In the analysis we used the data of some 48 seismological stations. These include not only the permanent stations from Hungary and permanent stations from neighbouring countries (Slovakia and Slovenia), but also the temporary broadband stations that were installed within the framework of the AlpArray project. Having applied rather strict manual quality control on the calculated radial receiver functions we stacked the receiver functions. Using the H–K grid search method we determined the Moho depth and the Vp/Vs ratio beneath the seismological stations in the western part of the Pannonian Basin. The unprecedented density of the AlpArray network, combined with the permanent stations, allowed us to derive high resolution Moho and Vp/Vs maps for the West Pannonian Basin, together with uncertainty estimates. Our preliminary results agree well with previous studies and complement them with finer details on the Moho topography and crustal thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ammon CJ (1991) The isolation of receiver effects from teleseismic P waveforms. Bull Seismol Soc Am 81:2504–2510

    Google Scholar 

  • Ammon CJ (1997) An overview of receiver function analysis. http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/rftn01.html Accessed 22 Apr 2017

  • Crotwell HP, Owens JT (2005) Automated receiver function processing. Bull Seismol Soc Am 76:702–709

    Google Scholar 

  • Fodor LI (2010) Mezozoos-kainozoos feszültségmezők és törésrendszerek a Pannon-medence ÉNy-i részén—módszertan és szerkezeti elemzés. DSc thesis, Budapest

  • Goldstein PD, Dodge M, Firpo LM (2003) SAC2000: signal processing and analysis tools for seismologists and engineer. IASPEI Int Handb Earthq Eng Seismol 81:1613–1620

    Article  Google Scholar 

  • Gráczer Z, Wéber Z (2012) One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geodaetica et Geophysica Hungarica 473:344–357

    Article  Google Scholar 

  • Gráczer Z, Bondár I, Czanik C, Czifra T, Győri E, Kiszely M, Mónus P, Süle B, Szanyi G, Tóth L, Varga P, Wesztergom V, Wéber Z (2004–2015) Hungarian National Seismological Bulletin. http://www.seismology.hu/index.php/en/seismicity/earthquake-bulletins. Accessed 08 May 2017

  • Gráczer Z, Szanyi G, Bondár I, Czanik C, Czifra T, Győri E, Hetényi G, Kovács I, Molinari I, Süle B, Szűcs E, Wesztergom V, Wéber Z, AlpArray Working Group (2018) AlpArray in Hungary: temporary and permanent seismological networks in the transition zone between the Eastern Alps and the Pannonian basin. Acta Geodaetica et Geophysica Hungarica. https://doi.org/10.1007/s40328-018-0213-4

    Google Scholar 

  • Grad M, Tiira T (2012) Moho depth of the European Plate from teleseismic receiver functions. J Seismol 16:95–105

    Article  Google Scholar 

  • Grad M, Tiira T, ESC Moho Working Group (2009) The Moho depth of the European plate. Geophys J Int 176:279–292

    Article  Google Scholar 

  • Helffrich G, Wookey J, Bastow I (2013) The seismic analysis code: a primer and user’s guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herrmann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84:1081–1088. https://doi.org/10.1785/0220110096

    Article  Google Scholar 

  • Hetényi G, Bus Z (2007) Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary. J Seismol 11:405–414

    Article  Google Scholar 

  • Hetényi G, Ren Y, Dando B, Stuart GW, Hegedűs E, Kovács AC, Houseman GA (2015) Crustal structure of the Pannonian Basin: the Alcapa and Tisza terrains and the mid-Hungarian zone. Tectonophysics 646:106–116

    Article  Google Scholar 

  • Hetényi G, Molinari I, Clinton J, Bokelmann G, Bondár I, Crawford WC, Dessa JX, Doubre C, Friederich W, Fuchs F, Giardini D, Gráczer Z, Handy MR, Herak M, Jia Y, Kissling E, Kopp H, Korn M, Margheriti L, Meier T, Mucciarelli M, Paul A, Pesaresi D, Piromallo C, Plenefisch T, Plomerová J, Ritter J, Rümpker G, Sipka V, Spallarossa D, Thomas C, Tilmann F, Wassermann J, Weber M, Wéber Z, Wesztergom V, Zivcic M, Team ASN, Crew AOC, Group AW (2018) The AlpArray seismic network—a large-scale European experiment to image the Alpine orogeny. Surv Geophys. https://doi.org/10.1007/s10712-018-9472-4

    Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenercy G, Síkhegyi F, Szafián P, Székely B, Tímár G, Tóth L, Tóth T (2006) A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó. Magyar Geofizika 47:133–137

    Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD thesis, Vrije Universiteit Amsterdam

  • Ligorría JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 89:1395–1400

    Google Scholar 

  • Ren Y, Grecu B, Stuart G, Houseman G, Hegedüs E, South Carpathian Project Working Group (2013) Crustal structures of the Carpathian–Pannonian region from ambient noise tomography. Geophys J Int 195:1351–11369. https://doi.org/10.1093/gji/ggt316

    Article  Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco LC, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools Released. EOS Transcr Am Geophys Union 79:579

    Article  Google Scholar 

Download references

Acknowledgements

The reported investigation was supported by the National Research, Development and Innovation Fund (No. K124241). Waveforms were used from the AlpArray temporary network (https://doi.org/10.12686/alparray/z3_2015), from the Hungarian National Seismological Network (https://doi.org/10.14470/uh028726), the Slovak National Seismological Network (https://doi.org/10.14470/fx099882) as well as the Slovenian National Seismological Network (https://doi.org/10.7914/sn/sl). We would like to thank to the authors of Generic Mapping Tools (GMT) software (Wessel and Smith 1998). The authors thank the two anonymous reviewers whose comments helped to improve the paper.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Dániel Kalmár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmár, D., Süle, B., Bondár, I. et al. Preliminary Moho depth determination from receiver function analysis using AlpArray stations in Hungary. Acta Geod Geophys 53, 309–321 (2018). https://doi.org/10.1007/s40328-018-0218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-018-0218-z

Keywords

Navigation