Acta Geodaetica et Geophysica

, Volume 53, Issue 2, pp 309–321 | Cite as

Preliminary Moho depth determination from receiver function analysis using AlpArray stations in Hungary

  • Dániel Kalmár
  • Bálint Süle
  • István Bondár
  • the AlpArray Working Group
Original Study


Receiver function analysis is applied to the western part of the Pannonian Basin, a rather complex region both geologically and geodynamically. Previous receiver function analyses in this region had to deal with much smaller station density and time span than those available to us. In the analysis we used the data of some 48 seismological stations. These include not only the permanent stations from Hungary and permanent stations from neighbouring countries (Slovakia and Slovenia), but also the temporary broadband stations that were installed within the framework of the AlpArray project. Having applied rather strict manual quality control on the calculated radial receiver functions we stacked the receiver functions. Using the H–K grid search method we determined the Moho depth and the Vp/Vs ratio beneath the seismological stations in the western part of the Pannonian Basin. The unprecedented density of the AlpArray network, combined with the permanent stations, allowed us to derive high resolution Moho and Vp/Vs maps for the West Pannonian Basin, together with uncertainty estimates. Our preliminary results agree well with previous studies and complement them with finer details on the Moho topography and crustal thickness.


Pannonian Basin AlpArray project Receiver function analysis Moho discontinuity 



The reported investigation was supported by the National Research, Development and Innovation Fund (No. K124241). Waveforms were used from the AlpArray temporary network (, from the Hungarian National Seismological Network (, the Slovak National Seismological Network ( as well as the Slovenian National Seismological Network ( We would like to thank to the authors of Generic Mapping Tools (GMT) software (Wessel and Smith 1998). The authors thank the two anonymous reviewers whose comments helped to improve the paper.


  1. Ammon CJ (1991) The isolation of receiver effects from teleseismic P waveforms. Bull Seismol Soc Am 81:2504–2510Google Scholar
  2. Ammon CJ (1997) An overview of receiver function analysis. Accessed 22 Apr 2017
  3. Crotwell HP, Owens JT (2005) Automated receiver function processing. Bull Seismol Soc Am 76:702–709Google Scholar
  4. Fodor LI (2010) Mezozoos-kainozoos feszültségmezők és törésrendszerek a Pannon-medence ÉNy-i részén—módszertan és szerkezeti elemzés. DSc thesis, BudapestGoogle Scholar
  5. Goldstein PD, Dodge M, Firpo LM (2003) SAC2000: signal processing and analysis tools for seismologists and engineer. IASPEI Int Handb Earthq Eng Seismol 81:1613–1620CrossRefGoogle Scholar
  6. Gráczer Z, Wéber Z (2012) One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geodaetica et Geophysica Hungarica 473:344–357CrossRefGoogle Scholar
  7. Gráczer Z, Bondár I, Czanik C, Czifra T, Győri E, Kiszely M, Mónus P, Süle B, Szanyi G, Tóth L, Varga P, Wesztergom V, Wéber Z (2004–2015) Hungarian National Seismological Bulletin. Accessed 08 May 2017
  8. Gráczer Z, Szanyi G, Bondár I, Czanik C, Czifra T, Győri E, Hetényi G, Kovács I, Molinari I, Süle B, Szűcs E, Wesztergom V, Wéber Z, AlpArray Working Group (2018) AlpArray in Hungary: temporary and permanent seismological networks in the transition zone between the Eastern Alps and the Pannonian basin. Acta Geodaetica et Geophysica Hungarica. Google Scholar
  9. Grad M, Tiira T (2012) Moho depth of the European Plate from teleseismic receiver functions. J Seismol 16:95–105CrossRefGoogle Scholar
  10. Grad M, Tiira T, ESC Moho Working Group (2009) The Moho depth of the European plate. Geophys J Int 176:279–292CrossRefGoogle Scholar
  11. Helffrich G, Wookey J, Bastow I (2013) The seismic analysis code: a primer and user’s guide. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Herrmann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84:1081–1088. CrossRefGoogle Scholar
  13. Hetényi G, Bus Z (2007) Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary. J Seismol 11:405–414CrossRefGoogle Scholar
  14. Hetényi G, Ren Y, Dando B, Stuart GW, Hegedűs E, Kovács AC, Houseman GA (2015) Crustal structure of the Pannonian Basin: the Alcapa and Tisza terrains and the mid-Hungarian zone. Tectonophysics 646:106–116CrossRefGoogle Scholar
  15. Hetényi G, Molinari I, Clinton J, Bokelmann G, Bondár I, Crawford WC, Dessa JX, Doubre C, Friederich W, Fuchs F, Giardini D, Gráczer Z, Handy MR, Herak M, Jia Y, Kissling E, Kopp H, Korn M, Margheriti L, Meier T, Mucciarelli M, Paul A, Pesaresi D, Piromallo C, Plenefisch T, Plomerová J, Ritter J, Rümpker G, Sipka V, Spallarossa D, Thomas C, Tilmann F, Wassermann J, Weber M, Wéber Z, Wesztergom V, Zivcic M, Team ASN, Crew AOC, Group AW (2018) The AlpArray seismic network—a large-scale European experiment to image the Alpine orogeny. Surv Geophys. Google Scholar
  16. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357CrossRefGoogle Scholar
  17. Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenercy G, Síkhegyi F, Szafián P, Székely B, Tímár G, Tóth L, Tóth T (2006) A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó. Magyar Geofizika 47:133–137Google Scholar
  18. Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352CrossRefGoogle Scholar
  19. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124CrossRefGoogle Scholar
  20. Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD thesis, Vrije Universiteit AmsterdamGoogle Scholar
  21. Ligorría JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 89:1395–1400Google Scholar
  22. Ren Y, Grecu B, Stuart G, Houseman G, Hegedüs E, South Carpathian Project Working Group (2013) Crustal structures of the Carpathian–Pannonian region from ambient noise tomography. Geophys J Int 195:1351–11369. CrossRefGoogle Scholar
  23. Schmid SM, Bernoulli D, Fügenschuh B, Matenco LC, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183CrossRefGoogle Scholar
  24. Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools Released. EOS Transcr Am Geophys Union 79:579CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • Dániel Kalmár
    • 1
    • 2
  • Bálint Süle
    • 2
  • István Bondár
    • 2
  • the AlpArray Working Group
  1. 1.Department of Geophysics and Space Science, Institute of Geography and Earth SciencesEötvös Loránd UniversityBudapestHungary
  2. 2.Kövesligethy Radó Seismological Observatory, Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth SciencesHungarian Academy of Sciences (MTA CSFK GGI KRSZO)BudapestHungary

Personalised recommendations