Skip to main content
Log in

Approximation of continuous surface differential operators with the generalized moving least-squares (GMLS) method for solving reaction–diffusion equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a meshless approximation based on generalized moving least squares is applied to solve the reaction–diffusion equations on the sphere and red-blood cell surfaces. The proposed method is based on the projected gradient of the shape functions, and it approximates the Laplace operator defined on the surfaces that is called Laplace–Beltrami. This technique only requires nodes at locations on the surface and the corresponding normal vectors to the surface. To discretize the time variable, an explicit time technique based on the fourth-order Runge–Kutta is used. Some numerical results on Turing and Fitzhugh–Nagumo partial differential equations are given for showing patterns which are appeared in biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Taken from Kondo and Miura (2010)

Fig. 2

Taken from Cherry and Fenton (2008)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adomian G (1995) The diffusion Brusselator equation. Comput Math Appl 29:1–3

    Article  MathSciNet  MATH  Google Scholar 

  • Alford JG, Auchmuty G (2006) Rotating wave solutions of the FitzHugh–Nagumo equations. J Math Biol 53(5):797–819

    Article  MathSciNet  MATH  Google Scholar 

  • Ang WT (2003) The two-dimensional reaction–diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng Anal Bound Elem 27:897–903

    Article  MATH  Google Scholar 

  • Bergdorf M, Sbalzarini I, Koumoutsakos P (2010) A Lagrangian particle method for reaction–diffusion systems on deforming surfaces. J Math Biol 61:649–663

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalmio M, Cheng L, Osher S, Sapiro G (2001) Variational problems and partial differential equations on implicit surfaces. J Comput Phys 174:759–780

    Article  MathSciNet  MATH  Google Scholar 

  • Calhoun DA, Helzel C (2009) A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes. SIAM J Sci Comput 31(6):4066–4099

    Article  MathSciNet  MATH  Google Scholar 

  • Cherry EM, Fenton FH (2008) Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J Phys 10:125016

    Article  Google Scholar 

  • Chertock A, Kurganov A (2008) A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer Math 111:169–205

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper SB, Van Leeuwen J (2013) Alan Turing: his work and impact. Elsevier, Atlanta

    MATH  Google Scholar 

  • Chiu C, Yu JL (2007) An optimal adaptive time-stepping scheme for solving reaction–diffusion–chemotaxis systems. Math Biosci Eng 4(2):187–203

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2016) The use of element-free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Fakhar-Izadi F (2011) Pseudospectral methods for Nagumo equation. Int J Numer Methods Biomed Eng 27:553–561

    Article  MathSciNet  MATH  Google Scholar 

  • Epshteyn Y, Kurganov A (2008) New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J Numer Anal 47:386–408

    Article  MathSciNet  MATH  Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, Hackensack

    Book  MATH  Google Scholar 

  • Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  Google Scholar 

  • Fua H, Guoa H, Houb J, Zhao J (2016) A stabilized mixed finite element method for steady and unsteady reaction–diffusion equations. Comput Methods Appl Mech Eng 304:102–117

    Article  MathSciNet  Google Scholar 

  • Fuselier EJ, Wright GB (2013) A high-order kernel method for diffusion and reaction–diffusion equations on surfaces. J Sci Comput 56:535–565

    Article  MathSciNet  MATH  Google Scholar 

  • Gambino G, Lombardo MC, Sammartino M (2013) Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. RWA. 14:1755–1779

    Article  MathSciNet  MATH  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernet 12:30–39

    Article  MATH  Google Scholar 

  • Gomatam J, Amdjadi F (1997) Reaction–diffusion equations on a sphere: meandering of spiral waves. Phys Rev E 56:3913–3919

    Article  MathSciNet  Google Scholar 

  • Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem Eng Sci 38:29–43

    Article  Google Scholar 

  • Guin LN, Mandal PK (2014) Effect of prey refuge on spatiotemporal dynamics of the reaction–diffusion system. Comput Math Appl 68:1325–1340

    Article  MathSciNet  MATH  Google Scholar 

  • Guin LN, Haque M, Mandal PK (2012) The spatial patterns through diffusion-driven instability in a predator-prey model. Appl Math Model 36:1825–1841

    Article  MathSciNet  MATH  Google Scholar 

  • Guin LN (2015) Spatial patterns through Turing instability in a reaction–diffusion predator-prey model. Math Comput Simul 109:174–185

    Article  MathSciNet  Google Scholar 

  • Hodgkin Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  • Ilati M, Dehghan M (2015) Meshless local weak form method based on a combined basis function for numerical investigation of Brusselator model and spike dynamics in the Gierer–Meinhardt system. Comput Model Eng Sci (CMES) 109:325–360

    Google Scholar 

  • Ilati M, Dehghan M (2017) Application of direct meshless local Petrov–Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33:107–124

    Article  Google Scholar 

  • Islam SU, Ali A, Haq S (2010) A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system. Appl Math Model 34:3896–3909

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich EM (2010) Hybrid spiking models. Philos Trans R Soc A 368:5061–5070

    Article  MathSciNet  MATH  Google Scholar 

  • Kondo S, Iwashita M, Yamaguchi M (2009) How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int J Dev Biol 53:851–856

    Article  Google Scholar 

  • Kondo S, Miura T (2010) Reaction–Diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Article  MathSciNet  MATH  Google Scholar 

  • Kostova T, Ravindran R, Schonbek M (2004) Fitzhugh–Nagumo revisited: types of bifurcations, periodical forcing and stability regions by a lyapunove functional. Int J Bifurcat Chaos 14:913–925

    Article  MATH  Google Scholar 

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  • Lehto E, Shankar V, Wright GB (2017) A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces. SIAM J Sci Comput 39(5):2129–2151

    Article  MathSciNet  MATH  Google Scholar 

  • Lengyel I, Epstein IR (1991) Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system. Science 251:650–652

    Article  Google Scholar 

  • MacDonald CB, Ruuth SJ (2009) The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J Sci Comput 31:4330–4350

    Article  MathSciNet  MATH  Google Scholar 

  • Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS (2012) Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2:487–496

    Article  Google Scholar 

  • Mirzaei D (2016) Error bounds for GMLS derivatives approximations of Sobolev functions. J Comput Appl Math 294(1):93–101

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzaei D (2017) Direct approximation on spheres using generalized moving least squares. BIT Numer. Math. 57:1041–1063

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32(3):983–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal RC, Jiwari R (2011) Numerical study of two-dimensional reaction–diffusion Brusselator system by differential quadrature method. Int J Comput Methods Eng Sci Mech 12:14–25

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi M, Mokhtari R, Schaback R (2014) Simulating the 2D Brusselator system in reproducing kernel Hilbert space. Comput Model Eng Sci 101:113–138

    MATH  Google Scholar 

  • Mosekilde E (1996) Topics in nonlinear dynamics: applications to physics, biology and economic systems. World Scientific, London

    MATH  Google Scholar 

  • Murray JD (1993) Mathematical biology. Springer, Heidelberg

    MATH  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc. IRE 50:2061–2070

    Article  Google Scholar 

  • Nomura T, Glass L (1996) Entrainment and termination of reentrant wave propagation in a periodically stimulated ring of excitable media. Phys. Rev. E. 53:6353–6360

    Article  Google Scholar 

  • Peng Y, Zhang T (2016) Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect. Appl. Math. Comput. 275:1–12

    MathSciNet  Google Scholar 

  • Piret C (2012) The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231(20):4662–4675

    Article  MathSciNet  MATH  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48:1695–1700

    Article  Google Scholar 

  • Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics. Springer, New York

    MATH  Google Scholar 

  • Roqoreanu C, Georgescu A, Giurgiteanu N (2000) The FitzHugh–Nagumo model: Bifurcation and dynamics. Springer, New York

    Book  MATH  Google Scholar 

  • Ruuth SJ, Merriman B (2008) A simple embedding method for solving partial differential equations on surfaces. J Comput Phys 227:1943–1961

    Article  MathSciNet  MATH  Google Scholar 

  • Salehi R, Dehghan M (2013) A generalized moving least square reproducing kernel method. J Comput Appl Math 249:120–132

    Article  MathSciNet  MATH  Google Scholar 

  • Schnakenberg J (1979) Simple chemical reaction system with limit cycle behavior. J Theor Biol 81:389–400

    Article  MathSciNet  Google Scholar 

  • Sekimura T, Madzvamuse A, Wathen A, Maini P (2000) A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proc R Soc Lond Ser B 26:852–859

    MATH  Google Scholar 

  • Selkov EE (1968) Self-oscillations in glycolysis. Eur J Biochem 4:79–86

    Article  Google Scholar 

  • Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput Math Appl 62:4322–4336

    Article  MathSciNet  MATH  Google Scholar 

  • Shankar V, Wright GB, Fogelson AL, Kirby RM (2015) A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J Sci Comput 63:745–768

    Article  MathSciNet  MATH  Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros M (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338:1476–1480

    Article  Google Scholar 

  • Smiely M (2009) An efficient implementation of a numerical method for a chemotaxis system. Int J Comput Math 86:219–235

    Article  MathSciNet  Google Scholar 

  • St Clair NM (2006) Pattern formation in partial differential equations, Thesis

  • Sugai SS, Ode KL, Ueda HR (2017) A design principle for an autonomous post-translational pattern formation. Cell Rep 19:863–874

    Article  Google Scholar 

  • Tatari M, Kamranian M, Dehghan M (2011) The finite point method for reaction–diffusion systems in developmental biology. Comput Model Eng Sci CMES 82:1–27

    MathSciNet  MATH  Google Scholar 

  • Tonnelier A (2002) The Mckean’s caricature of the Fitzhugh–Nagumo model I. The space-clamped system. SIAM J Appl Math 63:459–484

    Article  MathSciNet  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Ser B 237(641):37–72

    Article  MathSciNet  MATH  Google Scholar 

  • Twizell EH, Gumel AB, Cao Q (1999) A second-order scheme for the ”Brusselator” reaction–diffusion system. J Math Chem 26:297–316

    Article  MathSciNet  MATH  Google Scholar 

  • Tyson R, Lubkin S, Murray J (1999) Model and analysis of chemotactic bacterial patterns in a liquid medium. J Math Biol 38:359–375

    Article  MathSciNet  MATH  Google Scholar 

  • Tyson R, Stern L, LeVeque R (2000) Fraction step methods applied to a chemotaxis model. J Math Biol 41:455–475

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Pol B, Van der mark J (1928) The heart beat considered as a relaxation oscillation, and an electrical model of the heart. Philos Mag 6:763–775

    Article  Google Scholar 

  • Varvruska T (2015) Turing patterns and butterfly wings. Thesis, Carroll university

  • Wazwaz AM (2000) The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model. Appl Math Comput 110:251–264

    MathSciNet  MATH  Google Scholar 

  • Wendland H (2005) Scattered Data Approximation. Cambridge University Press

  • Xu B, Binczak S, Jacquir S, Pont O, Yahia H (Aug 2014) Parameters analysis of FitzHugh–Nagumo model for a reliable simulation. 36th Annual international conference of the IEEE engineering in Medicine and Biology Society (EMBC’14) Chicago. United States, IEEE, p 2014

  • Zhu J, Zhang YT, Newman SA, Alber M (2009) Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J Sci Comput 40:391–418

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewer for carefully reading this paper and for his (her) comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Communicated by Abimael Loula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Narimani, N. Approximation of continuous surface differential operators with the generalized moving least-squares (GMLS) method for solving reaction–diffusion equation. Comp. Appl. Math. 37, 6955–6971 (2018). https://doi.org/10.1007/s40314-018-0716-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0716-1

Keywords

Mathematics Subject Classification

Navigation