Skip to main content
Log in

Numerical treatment of non-integer order partial differential equations by omitting discretization of data

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this manuscript, we derived the shifted Jacobi operational matrices of fractional derivatives and integration which are applied for numerical solution of general linear multi-term fractional partial differential equations (FPDEs). A new approach implementing shifted Jacobi operational matrix without using the shifted Jacobi collocation technique is introduced for the numerical solution of multi-term FPDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. Further the proposed method needs no discretization of data. The proposed method is applied for solving linear multi-term FPDEs subject to initial conditions and the approximate solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the considered method with those found by other known methods like homotopy analysis (HAM) method. For computation purposes, we use Matlab 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksikas I, Fuxman A, Forbes JF, Winkin J (2013) LQ control design of a class of hyperbolic PDE systems: application to fixed-bed reactor. Automatica 45:1542–1548

    Article  MathSciNet  MATH  Google Scholar 

  • Ali S, Bushnaq S, Shah K, Arif M (2017) Numerical treatment of fractional order Cauchy reaction diffusion equations. Chao. Sol. Fractals 103:578–587

    Article  MathSciNet  MATH  Google Scholar 

  • Caudrey PJ, Eilbeck IC, Gibbon JD (1975) The sine-Gordon equation as a model classical field theory. Nuovo Cimento 25:497–511

    Article  Google Scholar 

  • Deghan M, Yousefi YA, Lotfi A (2011) The use of Hes variational iteration method for solving the telegraph and fractional telegraph equations. Commun. Numer. Method. Eng. 27:219–231

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Manafian J, Saadatmandi A (2010) The solution of linear fractional partial differential equations using the homotopy analysis method. Z. Naturforsch 65a:935–949

    MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Hafez RM (2012) On shifted Jacobi spectral method for high-order multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17(10):3802–3810

    Article  MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Ezz-Eldien SS (2012) A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36:4931–4943

    Article  MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Baleanu D, Ezz-Eldien SS (2014) The operational matrix formulation of the Jacobi Tau approximation for space fractional diffusion equation. Adv. Differ. Equ. 231:1687–1847

    MathSciNet  MATH  Google Scholar 

  • Gasea M, Sauer T (2000) On the history of multivariate polynomial interpolation. J. Comp. App.Math. 122:23–35

    Article  MathSciNet  Google Scholar 

  • Hackbusch W (1992) Elliptic differential equations: theory and numerical treatment, volume 18 of Springer series in computational mathematics. Springer, Berlin

    Book  Google Scholar 

  • Hayat T, Shahzad F, Ayub M (2007) Analytical solution for the steady flow of the third grad fluid in a porous half space. Appl. Math. Model. 31:243–250

    Article  MATH  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World Scientifc Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Hu Y, Luo Y, Lu Z (2008) Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 215:220–229

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari MA, Aminataei A (2010) Improved homotopy purturbation method. Int. Math. Forum. 5(32):1567–1579

    MathSciNet  MATH  Google Scholar 

  • Jafari H, Seifi S (2009) Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonl. Sci. Num. Simun. 14:1962–1969

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari H, Seifi S (2009) Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Common. Nonl. Sci. Numer. Simul. 14(5):2006–2012

    Article  MathSciNet  MATH  Google Scholar 

  • Keshavarz E, Ordokhani Y, Razzaghi M (2014) Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38:6038–6051

    Article  MathSciNet  Google Scholar 

  • Khalil H, Khan RA (2014) A new method based on Legendre polynomials for solutions of the fractional twodimensional heat conduction equation. Comput. Math. Appl. 67:1938–1953

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil H, Khan RA (2014) A new method based on legendre polynomials for solution of system of fractional order partial differential equations. Int. J. Comput. Math. 91(12):2554–2567

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil H, Khan RA, Al Smadi M, Freihat A (2015) Approximation of solution of time fractional order three-dimensional heat conduction problems with Jacobi Polynomials. Punjab Univ. J. Math. 47(1):35–56

    MathSciNet  MATH  Google Scholar 

  • Khan Hasib, Alipour M, Khan RA, Tajadodi H, Khan A (2015) On approximate solution of fractional order logistic equations by operational matrices of Bernstein polynomials. J. Math. Comput. Sci. 14:222–232

    Article  Google Scholar 

  • Kumar D, Singh J, Kumar S (2015) Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method. J. Assoc. Arab Univ. Basic Appl. Sci. 17:20–26

    Google Scholar 

  • Li YL (2010) Solving a nonlinear fractional differential equation using Chebyshev wavelets. Nonlinear Sci. Numer. Simul. 15:2284–2292

    Article  MathSciNet  MATH  Google Scholar 

  • Linge S, Sundnem J, Hanslien M, Lines GT, Tveito A (2009) Numerical solution of the bidomain equations. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367:1931–1950

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Cheng-shi (2010) The essence of the homotopy analysis method. Appl. Math. Comput. 216(4):1299–1303

    MathSciNet  MATH  Google Scholar 

  • Moghadam, AA, Aksikas I, Dubljevic S, Forbes JF (July 5-7, 2010) LQ control of coupled hyperbolic PDEs and ODEs: Application to a CSTR-PFR system,Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS 2010), Leuven, Belgium

  • Mohamed MA, Torky MSh (2014) Solution of linear system of partial differential equations by Legendre multiwavelet and chebyshev multiwavelet. Int. J. Sci. Innov. Math. Res. 2(12):966–976

    Google Scholar 

  • Mohebbi A, Abbaszadeh M, Dehghan M (2013) The use of a meshless technique based on collocation and radial basis functions for solving the fractional nonlinear schrodinger equation arising in quantum mechnics. Eng. Anal. Bound. Elem. 37:475–485

    Article  MathSciNet  MATH  Google Scholar 

  • Mohyud-Din ST, Noor MA (2009) Homotopy purturbation method for solving partial differential equations. Z. Naturforsch 64a:157–170

    MATH  Google Scholar 

  • Odibat Z, Momani S (2008) A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21(2):194–199

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham KB (2010) Fractional differential equations in electrochemistry. Adv. Eng. Soft. 41:9–12

    Article  MATH  Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  • Parthiban V, Balachandran K (2013) Solutions of system of fractional partial differential equations. Appl. Appl. Math. 8(1):289–304

    MathSciNet  MATH  Google Scholar 

  • Polyanin AD (2002) Linear partial differential equations for engineers and scientists. Chapman and Hall/CRC Company Boca Raton, London, New York Washington

    MATH  Google Scholar 

  • Rong LJ, Chang P (2016) Jacobi wavelet operational matrix of fractional integration for solving fractional integro-differential equation. J. Phys. Conf. Ser. 693:012002

    Article  Google Scholar 

  • Saadatmandi A, Deghan M (2010) A new operational matrix for solving fractional-order differential equation. Comp. Math. Appl. 59:1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  • Shah K, Ali A, Khan RA (2015) Numerical solutions of fractional order system of Bagley–Torvik equation using operational matrices. Sindh Univ. Res. J. 47(4):757–762

    Google Scholar 

  • Shah K, Khalil H, Khan RA (2017) A generalized scheme based on shifted Jacobi polynomials for numerical simulation of coupled systems of multi-term fractional-order partial differential equations. LMS J. Comput. Math. 20(1):11–29

    Article  MathSciNet  MATH  Google Scholar 

  • Shah K, Khalil H, Khan RA (2018) Analytical solutions of fractional order diffusion equations by natural transform method. Iran J. Sci. Technol. Trans. Sci. A. 42:1479–1493. https://doi.org/10.1007/s40995-016-0136-2

    Article  MathSciNet  MATH  Google Scholar 

  • Singh J, Kumar D, Kumar S (2013) New treatment of fractional Fornberg–Whitham equation via Laplace transform. Ain Sham Eng. J. 4:557–562

    Article  Google Scholar 

  • Sundnes J, Lines GT, Mardal KA, Tveito A (2002) Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Method. Biomech. Biomed. Eng. 5(6):397–409

    Article  Google Scholar 

  • Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2):233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Uddin M, Haq S (2011) RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16:4208–4214

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Fan Q (2012) The second kind Chebyshev wavelet method for solving fractional differential equation. Appl. Math. Comput. 218:85–92

    MathSciNet  Google Scholar 

  • Wensheng S (2007) Computer simulation and modeling of physical and biological processes using partial differential equations. University of Kentucky Doctoral Dissertations, Lexington

    Google Scholar 

  • Yang AM, Zhang YZ, Long Y (2013) Te Yang-Fourier transforms to heat-conduction in a semi-infnite fractal bar. Term. Sci. 17(3):707–713

    Google Scholar 

  • Yang Y, Ma Y, Wang L (2015) Legendre polynomials operational matrix method for solving fractional partial differential equations with variable coefficients. Math. Prob. Eng. 2015:9

  • Yen BC, Taung YK (1993) Reliability and uncertainty analyses in hydraulic design. American Society of Cival Engineers, New York

    Google Scholar 

  • Yi MX, Chen YM (2012) Haar wavelet operational matrix method for solving fractional partial differential equations. Appl. Math. Comput. 282(17):229–242

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are really thankful to the reviewers for their careful reading and excellent suggestions which improved this paper very well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Akram.

Additional information

Communicated by José Tenreiro Machado.

Appendices

Appendix A

In this appendix we recall some well-known definitions and notions.

Definition 4.1

Hilfer (2000) The Riemann–Liouville integral of arbitrary order \(p> 0\) of a function f(t) is defined by

$$\begin{aligned} {\mathcal {I}}^{p}f(t)=\frac{1}{\Gamma {(p)}}\int _{0}^{t}(t-\tau )^{p-1}f(\tau )d\tau , \end{aligned}$$

such that the integral on right-hand side converges pointwise on \((0, \infty )\). Also the aforesaid integral satisfies the following relations:

  1. (1)

    \({\mathcal {I}}^0 f(t)= f(t);\)

  2. (2)

    \({\mathcal {I}}^p {\mathcal {I}}^q f(t)={\mathcal {I}}^{p+q} f(t);\)

  3. (3)

    \({\mathcal {I}}^p t^\gamma =\frac{\Gamma (\gamma +1)}{\Gamma (p+\gamma +1)}t^{p+\gamma }.\)

Definition 4.2

Hilfer (2000) For a given function f(t), the Caputo fractional order derivative of order p is defined as

$$\begin{aligned} {\mathcal {D}}^p f(t)=\frac{1}{\Gamma (k-p)}\int _0^{t}\frac{f^{(k)}(s)}{(t-\tau )^{p+1-k}}d\tau , \ k-1< p \le k \ ,\, k=[\alpha ]+1, \end{aligned}$$

such that the right side is pointwise defined on \((0,\infty )\). Further, the operator \({\mathcal {D}}\) satisfies the following properties in particular for any constant C, \({\mathcal {D}}^{p}C=0\) and

$$\begin{aligned} {\mathcal {D}}^{p}t^i=\left\{ \begin{aligned}&0,\ i\in N,\ i< p,\\&\frac{\Gamma (1+i)}{\Gamma (1+i-p)}t^{i-p}, i\ge p.\end{aligned}\right. \end{aligned}$$

The following relations are necessary throughout this paper:

Theorem 4.3

Hilfer (2000) For any function V(t), the following results hold:

  1. (a)

    \({\mathcal {I}}^{\alpha }[{\mathcal {D}}^{p}V(t)]=0\) implies that \(V(t)= \sum _{i=0}^{k-1}V^{(i)}\frac{t^i}{\Gamma (i+1)};\)

  2. (b)

    \({\mathcal {I}}^{p}{\mathcal {D}}^{\alpha }V(t)=V(t)-\sum _{i=0}^{k-1}V^{(i)}\frac{t^i}{\Gamma (i+1)};\)

  3. (c)

    \({\mathcal {D}}^{p}(\lambda U(t)+\mu V(t))=\lambda {\mathcal {D}}^{\alpha }U(t)+\mu {\mathcal {D}}^{p}V(t).\)

Appendix B

Next the proof of Theorem 2.3 is provided below.

Proof

In order to prove the result, take \(\digamma _{L,n}^{(\eta ,\xi )}(t,x)\) as defined by (8), then the fractional integral of order p of \(\digamma _{L,n}^{(\eta ,\xi )}(t,x)\) with respect to t is given by the relation

$$\begin{aligned} \begin{aligned}&{\mathcal {I}}_t^p \digamma _{L,n}^{(\eta ,\xi )}(t,x)={\mathcal {I}}_t^p \digamma _{L,a}^{(\eta ,\xi )}(t)\digamma _{L,b}^{(\eta ,\xi )}(x)\\&\quad =\sum _{n=0}^a \frac{(-1)^{a-n}\Gamma (a+\xi +1)\Gamma (a+n+\eta +\beta +1)}{\Gamma (n+\xi +1)\Gamma (a+\eta +\xi +1)\Gamma (a-n+1)\Gamma (n+1)L^n}{\mathcal {I}}_t^p t^{n}\digamma _{L,a}^{(\eta ,\xi )}(x), \end{aligned} \end{aligned}$$

which in view of the definition of fractional integrals takes the following form:

$$\begin{aligned} {\mathcal {I}}_t^p&\digamma _{L,a}^{(\eta ,\xi )}(t)\digamma _{L,b}^{(\eta ,\xi )}(x)\nonumber \\&\quad =\sum _{n=0}^a \frac{(-1)^{a-n}\Gamma (a+\xi +1)\Gamma (a+n+\eta +\xi +1)\Gamma (1+n)}{\Gamma (n+\eta +1)\Gamma (a+\xi +\eta +1)\Gamma (a-n+1)\Gamma (n+1)\Gamma (1+n+p)L^n}\nonumber \\&\qquad \times t^{n+p}\digamma _{L,b}^{(\eta ,\xi )}(x). \end{aligned}$$
(41)

Approximating \(t^{n+p}\digamma _{L,b}^{(\eta ,\xi )}(x)\) interm of shifted Jacobi polynomials of two variables, we obtain

$$\begin{aligned} t^{n+p}\digamma _{L,b}^{(\eta ,\xi )}(x)\approx \sum _{i=0}^m\sum _{j=0}^mS_{i,j,b}\digamma _{L,i}^{(\eta ,\xi )}(t)\digamma _{L,j}^{(\eta ,\xi )}(x), \end{aligned}$$
(42)

where \(S_{i,j,b}=\frac{\delta _{j,b}}{{\mathfrak {R}}_{L,i}^{(\eta ,\xi )},{\mathfrak {R}}_{L,j}^{(\eta ,\xi )}}\int _0^{L}\int _0^{L}t^{n+p}\digamma _{L,b}^{(\eta ,\xi )}(x)\digamma _{L,i}^{(\eta ,\xi )}(t)\digamma _{L,j}^{(\eta ,\xi )}(x){\mathcal {W}}_{L}^{(\eta ,\xi )}(t,x)\mathrm{d}t\mathrm{d}x.\) Which further in view of orthogonality relation as in Doha et al. (2012) implies that

$$\begin{aligned} S_{i,j,b}=\frac{\delta _{j,b}}{{\mathfrak {R}}_{L,i}^{(\eta ,\xi )}}\int _0^{L}t^{n+p}\digamma _{L,i}^{(\eta ,\xi )}(x){\mathcal {W}}_{L}^{(\eta ,\xi )}(t)dt. \end{aligned}$$
(43)

Which on using (4),(2) yields

$$\begin{aligned} S_{i,j,b}= & {} \frac{\delta _{j,b}}{{\mathfrak {R}}_{L,i}^{(\eta ,\xi )}}\sum _{l=0}^i \frac{(-1)^{i-l}\Gamma (i+\xi +1)\Gamma (i+l+\eta +\xi +1)}{\Gamma (l+\xi +1)\Gamma (i+\eta +\xi +1)\Gamma (i-l+1)\Gamma (l+1)L^l}\nonumber \\&\int _0^{L}t^{n+p+l+\xi } (L-t)^{p}dt. \end{aligned}$$
(44)

Using the Convolution theorem of Laplace transformation in (44), we have

$$\begin{aligned} \pounds \{\int _0^{L}t^{n+p+l+\xi } (L-t)^{\eta }dt\}=\frac{\Gamma (n+p+l+\xi +1)\Gamma (\eta +1)}{s^{(n+p+l+\eta +\xi +2)}}. \end{aligned}$$
(45)

Taking inverse laplace of (45), we get

$$\begin{aligned} \int _0^{L}t^{n+p+l+\xi } (L-t)^{\eta }dt=\frac{\Gamma (n+p+l+\xi +1)\Gamma (\eta +1)L^{(n+p+l+\xi +\eta +1)}}{\Gamma (n+p+l+\xi +\eta +1)}. \end{aligned}$$
(46)

Therefore, one can get the coefficient of (42) as

$$\begin{aligned}&S_{ijb}\nonumber \\&\quad =\frac{\delta _{j,b}}{{\mathfrak {R}}_{L,i}^{(\eta ,\xi )}}\sum _{l=0}^i \frac{(-1)^{i-l}\Gamma (i+\xi +1)\Gamma (i+l+\eta +\xi +1)\Gamma (n+p+l+\xi +1)\Gamma (\eta +1)L^{(n+p+l+\xi +\eta +1)}}{\Gamma (l+\xi +1)\Gamma (i+\eta +\xi +1)\Gamma (i-l+1)\Gamma (l+1)L^l\Gamma (n+p+l+\xi +\eta +2)}.\nonumber \\ \end{aligned}$$
(47)

Using(5) and simplifying we get the generalized value as

$$\begin{aligned}&S_{ijb}\nonumber \\&\quad =\delta _{j,b}\sum _{l=0}^i \frac{(-1)^{i-l}(2i+\eta +\xi +1)\Gamma (i+1)\Gamma (i+l+\eta +\xi +1)\Gamma (n+p+l+\xi +1)\Gamma (\eta +1)L^{p}}{\Gamma (i+\eta +1)\Gamma (l+\xi +1)\Gamma (i-l+1)\Gamma (l+1)\Gamma (n+p+l+\xi +\eta +2)}\nonumber \\ \end{aligned}$$
(48)

For simplicity of notation let

$$\begin{aligned} \Delta _{a,n,p}=\frac{(-1)^{a-n}\Gamma (a+\xi +1)\Gamma (a+n+\eta +\xi +1)\Gamma (1+n)}{\Gamma (n+\xi +1)\Gamma (a+\eta +\xi +1)\Gamma (a-n+1)\Gamma (n+1)\Gamma (1+n+p)L^n}.\nonumber \\ \end{aligned}$$
(49)

Plugging (48),(49)(42) in (41), we get

$$\begin{aligned} {\mathcal {I}}_t^p \digamma _{L,a}^{(\eta ,\xi )}(t)\digamma _{L,b}^{(\eta ,\xi )}(x) =\sum _{n=0}^a\Lambda _{a,k,p}\sum _{i=0}^m\sum _{j=0}^mS_{i,j,b}\digamma _{L,i}^{(\eta ,\xi )}(t)\digamma _{L,j}^{(\eta ,\xi )}(x). \end{aligned}$$
(50)

The above relation (50) can also be written as

$$\begin{aligned} {\mathcal {I}}_t^p \digamma _{L,a}^{(\eta ,\xi )}(t)\digamma _{L,b}^{(\eta ,\xi )}(x) =\sum _{i=0}^m\sum _{j=0}^m\sum _{k=0}^a\Delta _{a,k,p}G_{i,j,b}\digamma _{L,i}^{(\eta ,\xi )}(t)\digamma _{L,j}^{(\eta ,\xi )}(x). \end{aligned}$$
(51)

Using

$$\begin{aligned} \Omega _{i,j,a,b,n}=\sum _{n=0}^a\Delta _{a,n,p}G_{i,j,b}, \end{aligned}$$
(52)

one has

$$\begin{aligned} {\mathcal {I}}^p \digamma _{L,a}^{(\eta ,\xi )}(t)\digamma _{L,b}^{(\eta ,\xi )}(x) =\sum _{i=0}^m\sum _{j=0}^m\Omega _{i,j,a,b,n}\digamma _{L,i}^{(\eta ,\xi )}(t)\digamma _{L,j}^{(\eta ,\xi )}(x). \end{aligned}$$
(53)

Also using \(r=Ki+j+1,\, v=Ka+b+1,\,\prod _{v,r,n}=\Omega _{i,j,b,a,n} \text { for } i,\,j,\,a,\,b=0,1,2,3,...,m\), we get the required result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K., Akram, M. Numerical treatment of non-integer order partial differential equations by omitting discretization of data. Comp. Appl. Math. 37, 6700–6718 (2018). https://doi.org/10.1007/s40314-018-0706-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0706-3

Keywords

Mathematics Subject Classification

Navigation