Skip to main content
Log in

Demazure Construction for ℤn-Graded Krull Domains

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

For a Mori dream space X, the Cox ring Cox(X) is a Noetherian \(\mathbb {Z}^{n}\)-graded normal domain for some n > 0. Let C(Cox(X)) be the cone (in \(\mathbb {R}^{n}\)) which is spanned by the vectors \(\boldsymbol {a} \in \mathbb {Z}^{n}\) such that Cox(X)a≠ 0. Then, C(Cox(X)) is decomposed into a union of chambers. Berchtold and Hausen (Michigan Math. J., 54(3) 483–515: 2006) proved the existence of such decompositions for affine integral domains over an algebraically closed field. We shall give an elementary algebraic proof to this result in the case where the homogeneous component of degree 0 is a field. Using such decompositions, we develop the Demazure construction for \(\mathbb {Z}^{n}\)-graded Krull domains. That is, under an assumption, we show that a \(\mathbb {Z}^{n}\)-graded Krull domain is isomorphic to the multi-section ring R(X;D1,…, Dn) for certain normal projective variety X and \(\mathbb {Q}\)-divisors D1, …, Dn on X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some people call it the Dolgachev-Pinkham-Demazure construction.

  2. Instead of assuming that A is Noetherian, it is sufficient to assume that \(A_{\mathbb {R}_{\ge 0}}\boldsymbol {a}\) is Noetherian. In fact, if \(A_{\mathbb {R}_{\ge 0}}\boldsymbol {a}\) is Noetherian, we can find a Noetherian subring of A with the same situation as A.

  3. In many cases, d1/r does not equal d2/s when there exist homogeneous elements f, g satisfying (3.7). In the case (a, b, c) = (1, 1, 1), d1/r = d2/s = 1 holds. The authors do not know any other examples satisfying d1/r = d2/s.

  4. The difficulty in this proof lies in that we have to find such a vector b contained in \(\mathbb {Q}^{n-s}\).

References

  1. Altmann, K., Hausen, J.: Polyhedral divisors and algebraic torus actions. Math. Ann. 334(3), 557–607 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berchtold, F., Hausen, J.: GIT-Equivalence beyond the ample cone. Michigan Math. J. 54(3), 483–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cutkosky, S.D.: Symbolic algebras of monomial primes. J. Reine Angew. Math. 416, 71–89 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Demazure, M.: Anneaux gradués normaux. In Seminaire Demazure-Giraud-Teissier, Singularites des surfaces, Ecole Polytechnique (1979). Introduction à la théorie des singularités, II, 35–68, Travaux en Cours, 37, Hermann, Paris (1988)

  5. Dolgachev, I.V.: Automorphic forms and quasihomogeneous singularities. Funct. Anal. Appl. 9, 149–151 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elizondo, E.J., Kurano, K., Watanabe, K.-I.: The total coordinate ring of a normal projective variety. J. Algebra 276(2), 625–637 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goto, S., Nishida, K., Watanabe, K.-I.: Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik’s question. Proc. Am. Math. Soc. 120(2), 383–392 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huneke, C.: Hilbert functions and symbolic powers. Michigan Math. J. 34(2), 293–318 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London mathematical society lecture note series 336. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  11. Kamoi, Y., Kurano, K.: On Chow groups of G-graded rings. Comm. Algebra 31(5), 2141–2160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurano, K.: Divisor class groups and graded canonical modules of multisection rings. Nagoya Math. J. 212, 139–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laface, A., Velasco, M.: A survey on Cox rings. Geom. Dedicata 139, 269–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  15. Nagata, M.: On the 14-th Problem of Hilbert. Am. J. Math. 81, 766–772 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Okawa, S.: On images of Mori dream spaces. Math. Ann. 364(3–4), 1315–1342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pinkham, H.: Normal surface singularities with \(\mathbb {C}^{*}\)-action. Math. Ann. 227(2), 183–193 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Samuel, P.: Lectures on unique factorization domains. Tata Inst. Fund. Res. Bombay (1964)

  19. Watanabe, K.-I.: Some remarks concerning Demazure’s construction of normal graded rings. Nagoya Math. J. 83, 203–211 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kurano.

Additional information

Dedicated to Professor Kei-ichi Watanabe on the occasion of his 74th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, Y., Echizenya, A. & Kurano, K. Demazure Construction for ℤn-Graded Krull Domains. Acta Math Vietnam 44, 173–205 (2019). https://doi.org/10.1007/s40306-018-0281-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-018-0281-0

Keywords

Mathematics Subject Classification (2010)

Navigation