Skip to main content

Advertisement

Log in

Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: from an efficient inhibitor to obscure inducer

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Formation and deposition of amyloid aggregates are pathological hallmark of several neurodegenerative diseases such as Alzheimer’s (AD), Parkinson (PD), and Huntington’s diseases. Thus, one therapeutic strategy is to eliminate/dismantle toxic aggregates by suppressing/breaking fibrils. The conventional treatment strategies often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood–brain barrier. Nanoparticles (NPs) exhibit promise at low sub-stoichiometric ratios, and, due to tunable size and surface properties, present an ideal platform for the design of effective aggregation suppressors. In the present study, we characterized the bio-compatible (silver nanoparticles) Ag-NPs and assessed those antithetical aggregation inhibitory/inductive capabilities at different NPs/protein ratios. It is proposed that negative (inhibitory) and positive (inductive) influences of NPs on the hen egg white lysozyme (HEWL) amyloid aggregation are achieved via different independent mechanisms. Based on obtained insights in this field, rationally design of effective NP-based therapeutics for neurodegenerative diseases may be a feasible perspective.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Adapted from [62]

Similar content being viewed by others

References

  1. M. Zaman, E. Ahmad, A. Qadeer, G. Rabbani, R.H. Khan, Int. J. Nanomed. 9, 899 (2014)

    Google Scholar 

  2. R. Parveen, T.N. Shamsi, S. Fatima, Int. J. Biol. Macromol. 94, 386 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. W.H. De Jong, P.J. Borm, Int. J. Nanomed. 3, 133 (2008)

    Article  Google Scholar 

  4. L. Crombez, M.C. Morris, S. Deshayes, F. Heitz, G. Divita, Curr. Pharm. Des. 14, 3656 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2, 577 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. P.M. Heegaard, U. Boas, D.E. Otzen, Macromol. Biosci. 7, 1047 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. E. Casals, T. Pfaller, A. Duschl, G.J. Oostingh, V. Puntes, ACS Nano 4, 3623 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. T. Cedervall, I. Lynch, M. Foy, T. Berggad, S. Donnelly, G. Cagney, S. Linse, K. Dawson, Angew. Chem. Int. Ed. 46, 5754 (2007)

    Article  CAS  Google Scholar 

  9. A.A. Vertegel, R.W. Siegel, J.S. Dordick, Langmuir 20, 6800 (2004)

    Article  PubMed  Google Scholar 

  10. W. Shang, J.H. Nuffer, J.S. Dordick, R.W. Siegel, Nano Lett. 7, 1991 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. X. Wu, G. Narsimhan, Langmuir 24, 4989 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. L. Fei, S. Perrett, Int. J. Mol. Sci. 10, 646 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Akiyoshi, Y. Sasaki, J. Sunamoto, Bioconjug. Chem. 10, 321 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. M. De, V.M. Rotello, Chem. Commun. Camb. 14, 3504 (2008)

    Article  CAS  Google Scholar 

  15. T.P.J. Knowles, M. Vendruscolo, C.M. Dobson, Nat. Rev. Mol. Cell Biol 15, 496 (2014)

    Article  CAS  Google Scholar 

  16. C.A. Ross, M.A. Poirier, Nat. Med. 10, 510 (2004)

    Article  CAS  Google Scholar 

  17. C. Haass, D.J. Selkoe, Nat. Rev. Mol. Cell. Bio. 8, 101 (2007)

    Article  CAS  Google Scholar 

  18. F. Gervais, J. Paquette, C. Morissette, P. Krzywkowski, M. Yu, Neurobiol Aging 28, 537 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. S. Salomone, F. Caraci, G.M. Leggio, J. Fedotova, F. Drago, Br. J. ClinPharmacol. 73, 504 (2012)

    CAS  Google Scholar 

  20. R. Alyautdin, I. Khalin, M.I. Nafeeza, M.H. Haron, D. Kuznetsov, Int. J. Nanomedicine 9, 795 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Stegemann, F. Leveiller, D. Franchi, H. de Jong, H. Lindén, Eur. J. Pharm. Sci. 31, 249 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. D. Paolino, D. Cosco, R. Molinaro, C. Celia, M. Fresta, Drug Discov. Today 16, 311 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. S. Singh, M. Singh, I.S. Gambhir, Dig. J. Nanomater. Biostruct. 3, 75 (2008)

    Google Scholar 

  24. V. Bellotti, M. Nuvolone, S. Giorgetti, L. Obici, G. Palladini, P. Russo, F. Lavatelli, V. Perfetti, G. Merlini, Ann. Med. 39, 200 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. D. Chopra, M. Gulati, V. Saluja, P. Pathak, P. Bansal, Recent Pat. CNS Drug Discov. 3, 216 (2008)

  26. M.A. Busquets, R. Sabaté, J. Estelrich, Nanoscale Res Lett. 9, 538 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Wang, M. Zhang, X. Mao, Y. Yu, C.X. Wang, Y.L. Yang, Adv. Mater. 25, 3780 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. Y.A. Krutyakov, A.A. Kudrynskiy, A.Y. Olenin, G.V. Lisichkin, Russ. Chem. Rev. 77, 233

  29. (2008)

  30. J.H. Lee, Y.S. Kim, K.S. Song, H.R. Ryu, J.H. Sung, J.D. Park, H.M. Park, N.W. Song, B.S. Shin, D. Marshak, K. Ahn, J.E. Lee, I. Yu, FibreToxicol. 10, 36 (2013)

    CAS  Google Scholar 

  31. W.J. Trickler, S.M. Lantz, R.C. Murdock, A.M. Schrand, B.L. Robinson, G.D. Newport, J.J. Schlager, S.J. Oldenburg, M.G. Paule, W. Slikker Jr.. S.M. Hussain, S.F. Ali, Toxicol. Sci. 118, 160 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. M. Mahmoudi, H.R. Kalhor, S. Laurent, I. Lynch, Nanoscale 5, 2570 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. H. Ramshini, A.S. Moghaddasi, L.S. Aldaghi, N. Mollania, A. Ebrahim-Habibi, Arch. Ital. Biol. 155, 131–141 (2017)

    CAS  PubMed  Google Scholar 

  34. L.A. Morozova-Roche, J. Zurdo, A. Spencer, W. Noppe, V. Receveur, D.B. Archer, M. Joniau, C.M. Dobson, J. Struct. Biol. 130, 339 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. A. Cao, D. Hu, L. Lai, Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci. 13, 319 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Ramshini, B. Mannini, K. Khodayari, A. Ebrahim-Habibi, A.S. Moghaddasi, R. Tayebee, F. Chiti,Eur. J. Med. Chem. 124, 361 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. R. Swaminathan, V.K. Ravi, S. Kumar, M.V. Kumar, N. Chandra, Adv. Protein Chem. Struct. Biol. 84, 63 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. M. Xu, V.A. Shashilov, V.V. Ermolenkov, L. Fredriksen, D. Zagorevski, I.K. Lednev, Protein Sci. 16, 815 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A.J. Sophianopoulos, C. Rhodes, D.N. Holcomb, K.E. Van Holde, J. Biol. Chem. 237, 1107 (1962)

    CAS  PubMed  Google Scholar 

  40. M.R. Nilsson, Methods 34, 151 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. A. Jangholi, M.R. Ashrafi-Kooshk, S.S. Arab, G. Riazi, F. Mokhtari, M. Poorebrahim, H. Mahdiuni, B.I. Kurganov, A.A. Moosavi-Movahedi, R. Khodarahmi, Arch. Biochem. Biophys. 609, 1 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. N. Rezaei-Ghaleh, H. Ramshini, A. Ebrahim-Habibi, A.A. Moosavi-Movahedi, M. Nemat-Gorgani, Biophys. Chem. 132, 23 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. A. Mishra, D.K. Mishra, N.K. Bohra, Annal. Arid Zone 54(1), 2), 43 (2015)

    Google Scholar 

  44. K. Jyoti, M. Baunthiyal, A. Singh, J Radiat. Res. App. Sci. 9, 217 (2016)

    Article  CAS  Google Scholar 

  45. S. Roy, T. Mukherjee, S. Chakraborty, T.K. Das, Dig. J. Nanomater. Biostruct. 8, 197 (2013)

    Google Scholar 

  46. M. Dehvari, A. Ghahghaei, Int. J. Biol. Macromol. 108, 1128 (2018)

    Article  CAS  PubMed  Google Scholar 

  47. S. Mayilo, M.A. Kloster, M. Wunderlich, A. Lutich, T.A. Klar, A. Nichtl, K. Kùrzinger, F.D. Stefani, J. Feldmann, Nano Lett. 9, 4558 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. C.C. Lee, A. Nayak, A. Sethuraman, G. Belfort, G.J. McRae, A three-Stage Kinetic Model of Amyloid Fibrillation. Biophys. J. 92, 3448 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. J.T. Jarrett, P.T. Lansbury, Biochemistry 31, 12345 (1992)

    Article  CAS  PubMed  Google Scholar 

  51. R. Khodarahmi, H. Soori, M. Amani, Protein. J. 28, 349 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. C. Cabaleiro-Lago, F. Quinlan-Pluck, I. Lynch, S. Lindman, A.M. Minogue, E. Thulin, D.M. Walsh, K.A. Dawson, S. Linse, Am. Chem. Soc. 130, 15437 (2008)

    Article  CAS  Google Scholar 

  53. S.C. McBain, H.H. Yiu, J. Dobson, Magnetic nanoparticles for gene and drugdelivery. Int. J. Nanomed. 3, 169 (2008)

    CAS  Google Scholar 

  54. S. Radic, T.P. Davis, P.C. Ke, F. Ding, RSC Adv. 5, 105489 (2015)

    Article  CAS  Google Scholar 

  55. S. Linse, C. Cabaleiro-Lago, W.F. Xue, I. Lynch, S. Lindman, E. Thulin, S.E. Radford, K.A. Dawson, Proc. Natl. Acad. Sci. USA, 104, 8691 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    Article  CAS  PubMed  Google Scholar 

  57. H. Ramshini, M. mohammad-zadeh, A. Ebrahim-Habibi. Int. J. Biol. Macromol. 78, 396 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. A.A. Ladiwala, J.S. Dordick, P.M. Tessier, J. Biol. Chem. 286, 3209 (2011)

    Article  CAS  PubMed  Google Scholar 

  59. S.S. Shahangian, B. Rasti, R.H. Sajedi, R. Khodarahmi, M. Taghdir, B. Ranjbar, Protein. J. 30, 549 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. X. Zhang, X. Fu, H. Zhang, C. Liu, W. Jiao, Z. Chang, Int. J. Biochem. Cell Biol. 37, 1232 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. R. Khodarahmi, M. Beyrami, H. Soori, Arch. Biochem. Biophys. 477, 67 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. A. Nitani, H. Muta, M. Adachi, M. So, K. Sasahara, K. Sakurai, E. Chatani, K. Naoe, H. Ogi, D. Hall, Y.Goto, J. Biol. Chem. 292, 21219 (2017)

    Article  CAS  Google Scholar 

  63. G. Wei, Z. Su, N.P. Reynolds, P. Arosio, I.W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 46, 4661 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the research council of the University of Payam Noor (54093). Valuable assistances provided by Mr. Sajjad Esmaeili are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Ramshini or Reza Khodarahmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramshini, H., Moghaddasi, AS., Mollania, N. et al. Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: from an efficient inhibitor to obscure inducer. J IRAN CHEM SOC 16, 33–44 (2019). https://doi.org/10.1007/s13738-018-1478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1478-9

Keywords

Navigation