Uncontrolled inexact information within bundle methods

  • Jérôme Malick
  • Welington de Oliveira
  • Sofia Zaourar
Original Paper


We consider convex non-smooth optimization problems where additional information with uncontrolled accuracy is readily available. It is often the case when the objective function is itself the output of an optimization solver, as for large-scale energy optimization problems tackled by decomposition. In this paper, we study how to incorporate the uncontrolled linearizations into (proximal and level) bundle algorithms in view of generating better iterates and possibly accelerating the methods. We provide the convergence analysis of the algorithms using uncontrolled linearizations, and we present numerical illustrations showing they indeed speed up resolution of two stochastic optimization problems coming from energy optimization (two-stage linear problems and chance-constrained problems in reservoir management).


Non-smooth optimization Bundle methods Inexact oracle Energy optimization Two-stage stochastic problems  Chance-constrained problems 

Mathematics Subject Classification

65K05 49J52 49M27 90C15 90C25 90C27 



We thank Antonio Frangioni (Univ. of Pisa, Italy) for insightful discussions on a first version of this article and Wim van Ackooij (EDF, France) for providing us with the real-life data set used in Sect. 4.2. The first author gratefully acknowledges the support of the Grant “ANR GeoLMI” and the CNRS Mastodons project “gargantua/titan”. The second author gratefully acknowledges the support provided by Severo Ochoa Program SEV-2013-0323 and Basque Government BERC Program 2014-2017.


  1. Brannlund U, Kiwiel KC, Lindberg PO (1995) A descent proximal level bundle method for convex nondifferentiable optimization. Oper Res Lett 17(3):121–126CrossRefGoogle Scholar
  2. Beltran C, Tadonki C, Vial JPh (2006) Solving the p-median problem with a semi-lagrangian relaxation. Comput Optim Appl 35(2):239–260Google Scholar
  3. Deák I (2006) Two-stage stochastic problems with correlated normal variables: computational experiences. Ann OR 142(1):79–97CrossRefGoogle Scholar
  4. Desrosiers J, Lbbecke ME (2005) A primer in column generation. In: Desaulniers G, Desrosiers J, Solomon M (eds) Column generation. Springer, US, pp 1–32 (English)Google Scholar
  5. Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213CrossRefGoogle Scholar
  6. Dentcheva D, Martinez G (2013) Regularization methods for optimization problems with probabilistic constraints. Math Program (Ser A) 138(1–2):223–251CrossRefGoogle Scholar
  7. de Oliveira W, Sagastizábal C (2014) Level bundle methods for oracles with on-demand accuracy. Optim Methods Softw 29(6):1180–1209CrossRefGoogle Scholar
  8. de Oliveira W, Sagastizábal C, Lemaréchal C (2014) Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math Program 148(1–2):241–277 (English)CrossRefGoogle Scholar
  9. de Oliveira W, Sagastizábal C, Penna D, Maceira M, Damázio J (2010) Optimal scenario tree reduction for stochastic streamflows in power generation planning problems. Optim Methods Softw 25(6):917–936CrossRefGoogle Scholar
  10. de Oliveira W, Sagastizábal C, Scheimberg S (2011) Inexact bundle methods for two-stage stochastic programming. SIAM J Optim 21(2):517–544CrossRefGoogle Scholar
  11. de Oliveira W, Solodov M (2015) A doubly stabilized bundle method for nonsmooth convex optimization. Math Program 1–35. doi: 10.1007/s10107-015-0873-6
  12. Fábián C (2000) Bundle-type methods for inexact data. Cent Eur J Oper Res 8:35–55Google Scholar
  13. Frangioni A (2002) Generalized bundle methods. SIAM J Optim 13(1):117–156Google Scholar
  14. Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10(4):237–260CrossRefGoogle Scholar
  15. Hintermüller M (2001) A proximal bundle method based on approximate subgradients. Comput Optim Appl 20:245–266. doi: 10.1023/A:1011259017643 CrossRefGoogle Scholar
  16. Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms. Grund. der math. Wiss, Springer-Verlag, pp 305–306 (two volumes)Google Scholar
  17. Kelley JE (1960) The cutting plane method for solving convex programs. J Soc Ind Appl Math 8:703–712CrossRefGoogle Scholar
  18. Kiwiel KC (2006) A proximal bundle method with approximate subgradient linearizations. SIAM J Optim 16(4):1007–1023CrossRefGoogle Scholar
  19. Lemaréchal C (2001) Lagrangian relaxation. In: Jünger M, Naddef D (eds) Computational combinatorial optimization. Springer Verlag, Heidelberg, pp 112–156CrossRefGoogle Scholar
  20. Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math Program 69(1):111–147CrossRefGoogle Scholar
  21. Magnanti TL, Wong RT (1981) Accelerating benders decomposition: algorithmic enhancement and model selection criteria. Oper Res 29(3):464–484CrossRefGoogle Scholar
  22. Ruszczyński A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science, vol 10. Elsevier, AmsterdamGoogle Scholar
  23. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM series on optimization. SIAM—Society for Industrial and Applied Mathematics and Mathematical Programming Society, PhiladelphiaGoogle Scholar
  24. Solodov MV (2003) On approximations with finite precision in bundle methods for nonsmooth optimization. J Optim Theory Appl 119(1):151–165CrossRefGoogle Scholar
  25. Tahanan M, van Ackooij W, Frangioni A, Lacalandra F (2015) Large-scale unit commitment under uncertainty. 4OR-Q J Oper Res 13(2):115–171Google Scholar
  26. van Ackooij W, Berge V, de Oliveira W, Sagastizábal C (2015) Probabilistic optimization via approximate p-efficient points and bundle methods. Tech. report. Optimization Online report number 4927Google Scholar
  27. van Ackooij W, de Oliveira W (2014) Level bundle methods for constrained convex optimization with various oracles. Comput Optim Appl 57(3):555–597CrossRefGoogle Scholar
  28. van Ackooij W, Frangioni A, Oliveira W (2015) Inexact stabilized benders decomposition approaches to chance-constrained problems with finite support (Submitted). Available as preprint TR-15-01 of Universita di Pisa Dipartimento di InformaticaGoogle Scholar
  29. van Ackooij W, Henrion R, Moller A, Zorgati R (2014) Joint chance constrained programming for hydro reservoir management. Optim Eng 15(2):509–531Google Scholar
  30. Zakeri G, Philpott A, Ryan D (2000) Inexact cuts in benders decomposition. SIAM J Optim 10(3):643–657CrossRefGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies 2016

Authors and Affiliations

  • Jérôme Malick
    • 1
  • Welington de Oliveira
    • 2
    • 3
  • Sofia Zaourar
    • 4
    • 5
  1. 1.CNRS, LJKGrenobleFrance
  2. 2.UERJRio de JaneiroBrazil
  3. 3.BCAMBilbaoSpain
  4. 4.INRIA, UJFGrenobleFrance
  5. 5.Xerox Research Centre EuropeGrenobleFrance

Personalised recommendations