Skip to main content
Log in

An Overview of the Role of Metabolomics in the Identification of Dietary Biomarkers

  • Cardiovascular Disease (JHY Wu, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Application of metabolomics to nutrition research is rapidly growing. Currently, the main areas where metabolomics plays a role in nutrition research are (1) identification of dietary biomarkers (2) study of diet-related diseases and (3) examination of metabolic effects due to nutrition interventions. The present review focuses on the role metabolomics can play in the discovery of dietary biomarkers. Achieving accurate assessment of dietary intake is one of the main hurdles in nutrition research. Classical self-reporting methods have a number of well-documented limitations, and there is a pressing need for more objective measures. In this respect, there is growing interest in dietary biomarkers and metabolomic applications offer a unique method for the identification of new dietary biomarkers. In recent years, a number of putative biomarkers have been identified using metabolomic-based approaches; however, validation of the biomarkers is still lacking. Further work is needed to demonstrate the true ability of these biomarkers in nutrition research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Park S, Sadanala KC, Kim EK. A metabolomic approach to understanding the metabolic link between obesity and diabetes. Mol Cells. 2015;38(7):587–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta. 2012;750:82–97.

    Article  CAS  PubMed  Google Scholar 

  4. Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res. 2007;6(2):443–58.

    Article  CAS  PubMed  Google Scholar 

  5. Brennan L. NMR-based metabolomics: from sample preparation to applications in nutrition research. Prog Nucl Magn Reson Spectrosc. 2014;83:42–9.

    Article  CAS  PubMed  Google Scholar 

  6. Brennan L. Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans. 2013;41(2):670–3.

    Article  CAS  PubMed  Google Scholar 

  7. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23.

    Article  CAS  PubMed  Google Scholar 

  8. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–308. A review of the field with a focus on the food metabolome.

    Article  CAS  PubMed  Google Scholar 

  9. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36(3):648–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8(1):52–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shah SH, Svetkey LP, Newgard CB. Branching out for detection of type 2 diabetes. Cell Metab. 2011;13(5):491–2.

    Article  CAS  PubMed  Google Scholar 

  13. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 2011;3(80):80re2.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bondia-Pons I, Poho P, Bozzetto L, Vetrani C, Patti L, Aura AM, et al. Isoenergetic diets differing in their n-3 fatty acid and polyphenol content reflect different plasma and HDL-fraction lipidomic profiles in subjects at high cardiovascular risk. Mol Nutr Food Res. 2014;58(9):1873–82.

    Article  CAS  PubMed  Google Scholar 

  16. Tasevska N. Urinary sugars—a biomarker of total sugars intake. Nutrients. 2015;7(7):5816–33.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sorensen TI, et al. Energy balance measurement: when something is not better than nothing. Int J Obes (Lond). 2015;39(7):1109–13.

    Article  CAS  Google Scholar 

  18. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125(5–6):507–25.

    Article  PubMed  Google Scholar 

  19. Samraj AN, Pearce OMT, Laubli H, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542–7. This animal study demonstrates the potential of dietary biomarkers to study diet-disease associations and possible mechanisms. A mechanistic explanation for the epidemiological association between red meat carcinoma risk is provided.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cross AJ, Major JM, Sinha R. Urinary biomarkers of meat consumption. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1107–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lloyd AJ, Fave G, Beckmann M, Lin W, Tailliart K, Xie L, et al. Use of mass spectrometry fingerprinting to identify urinary metabolites after consumption of specific foods. Am J Clin Nutr. 2011;94(4):981–91.

    Article  CAS  PubMed  Google Scholar 

  22. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas ME, Kochhar S, et al. Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr. 2010;92(2):436–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Edmands WM, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, et al. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J Proteome Res. 2011;10(10):4513–21.

    Article  CAS  PubMed  Google Scholar 

  24. Beckmann M, Lloyd Aj Fau - Haldar S, Haldar S Fau - Seal C, Seal C Fau - Brandt K, Brandt K Fau - Draper J, Draper J. Hydroxylated phenylacetamides derived from bioactive benzoxazinoids are bioavailable in humans after habitual consumption of whole grain sourdough rye bread. Mol Nutr Food Res. 2013;57(10):1859–73.

  25. Guertin KA, Loftfield E, Boca SM, Sampson JN, Moore SC, Xiao Q, et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr. 2015;101(5):1000–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hjerpsted J, Ritz C, Schou S, Tholstrup T, Dragsted L. Effect of cheese and butter intake on metabolites in urine using an untargeted metabolomics approach. Metabolomics. 2014;10(6):1176–85.

    Article  CAS  Google Scholar 

  27. O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011;93(2):314–21.

    Article  PubMed  Google Scholar 

  28. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, et al. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006;5(10):2780–8.

    Article  CAS  PubMed  Google Scholar 

  29. Myint T, Fraser G, Lindsted K, Knutsen S, Hubbard R, Bennett HW. Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000;152(8):752–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wittenbecher C, Mühlenbruch K, Kröger J, Jacobs S, Kuxhaus O, Floegel A, et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr. 2015;101(6):1241–50.

    Article  CAS  PubMed  Google Scholar 

  31. Altorf-van der Kuil W, Brink E, Boetje M, Siebelink E, Bijlsma S, Engberink M, et al. Identification of biomarkers for intake of protein from meat, dairy products and grains: a controlled dietary intervention study. Br J Nutr. 2013;110(5):810–22.

    Article  CAS  PubMed  Google Scholar 

  32. Lloyd AJ, Beckmann M, Haldar S, Seal C, Brandt K, Draper J. Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. Am J Clin Nutr. 2013;97(2):377–89.

    Article  CAS  PubMed  Google Scholar 

  33. Andersen MB, Kristensen M, Manach C, Pujos-Guillot E, Poulsen SK, Larsen TM, et al. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal Bioanal Chem. 2014;406(7):1829–44.

    Article  CAS  PubMed  Google Scholar 

  34. Andersen MB, Reinbach H, Rinnan Å, Barri T, Mithril C, Dragsted L. Discovery of exposure markers in urine for Brassica-containing meals served with different protein sources by UPLC-qTOF-MS untargeted metabolomics. Metabolomics. 2013;9(5):984–97.

    Article  CAS  Google Scholar 

  35. Stanstrup J, Schou SS, Holmer-Jensen J, Hermansen K, Dragsted LO. Whey protein delays gastric emptying and suppresses plasma fatty acids and their metabolites compared to casein, gluten, and fish protein. J Proteome Res. 2014;13(5):2396–408.

    Article  CAS  PubMed  Google Scholar 

  36. Guertin KA, Moore SC, Sampson JN, Huang WY, Xiao Q, Stolzenberg-Solomon RZ, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100(1):208–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zheng H, Yde CC, Clausen MR, Kristensen M, Lorenzen J, Astrup A, et al. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem. 2015;63(10):2830–9.

    Article  CAS  PubMed  Google Scholar 

  38. May DH, Navarro SL, Ruczinski I, Hogan J, Ogata Y, Schwarz Y, et al. Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. Br J Nutr. 2013;110(10):1760–70.

    Article  CAS  PubMed  Google Scholar 

  39. Lloyd AJ, Beckmann M, Favé G, Mathers JC, Draper J. Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr. 2011;106(6):812–24.

    Article  CAS  PubMed  Google Scholar 

  40. Pujos-Guillot E, Hubert J, Martin JF, Lyan B, Quintana M, Claude S, et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J Proteome Res. 2013;12(4):1645–59.

    Article  CAS  PubMed  Google Scholar 

  41. Atkinson W, Downer P, Lever M, Chambers ST, George PM. Effects of orange juice and proline betaine on glycine betaine and homocysteine in healthy male subjects. Eur J Nutr. 2007;46(8):446–52.

    Article  CAS  PubMed  Google Scholar 

  42. Llorach R, Medina S, García-Viguera C, Zafrilla P, Abellán J, Jauregui O, et al. Discovery of human urinary biomarkers of aronia-citrus juice intake by HPLC-q-TOF-based metabolomic approach. Electrophoresis. 2014;35(11):1599–606.

    Article  CAS  PubMed  Google Scholar 

  43. Rago D, Mette K, Gürdeniz G, Marini F, Poulsen M, Dragsted L. A LC–MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome. Metabolomics. 2013;9(6):1202–15.

    Article  CAS  Google Scholar 

  44. Garcia-Aloy M, Llorach R, Urpi-Sarda M, Tulipani S, Salas-Salvadó J, Martínez-González M, et al. Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort. Metabolomics. 2015;11(1):155–65.

    Article  CAS  Google Scholar 

  45. Bondia-Pons I, Barri T, Hanhineva K, Juntunen K, Dragsted L, Mykkanen H, et al. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol Nutr Food Res. 2013;57(3):412–22.

    Article  CAS  PubMed  Google Scholar 

  46. Rasmussen LG, Winning H, Savorani F, Ritz C, Engelsen SB, Astrup A, et al. Assessment of dietary exposure related to dietary GI and fibre intake in a nutritional metabolomic study of human urine. Genes Nutr. 2012;7(2):281–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gibbons H, O’Gorman A, Brennan L. Metabolomics as a tool in nutritional research. Curr Opin Lipidol. 2015;26(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  48. O’Gorman A, Gibbons H, Brennan L. Metabolomics in the identification of biomarkers of dietary intake. Comput Struct Biotechnol J. 2013;4, e201301004.

    PubMed Central  PubMed  Google Scholar 

  49. Rothwell JA, Urpi-Sarda M Fau - Boto-Ordonez M, Boto-Ordonez M Fau - Knox C, Knox C Fau - Llorach R, Llorach R Fau - Eisner R, Eisner R Fau - Cruz J et al. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database. 2012;2012(bas031).

  50. Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci. 2010;84(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  51. Aubertin-Leheudre M, Koskela A, Samaletdin A, Adlercreutz H. Plasma alkylresorcinol metabolites as potential biomarkers of whole-grain wheat and rye cereal fibre intakes in women. Br J Nutr. 2010;103(3):339–43.

    Article  CAS  PubMed  Google Scholar 

  52. Landberg R, Townsend M, Neelakantan N, Sun Q, Sampson L, Spiegelman D, et al. Alkylresorcinol metabolite concentrations in spot urine samples correlated with whole grain and cereal fiber intake but showed low to modest reproducibility over one to three years in U.S. women. J Nutr. 2012;142(5):872–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Guyman LA, Adlercreutz H, Koskela A, Li L, Beresford S, Lampe JW. Urinary 3-(3,5-dihydroxyphenyl)-1-propanoic acid, an alkylresorcinol metabolite, is a potential biomarker of whole-grain intake in a U.S. population. J Nutr. 2008;138(10):1957–62.

    CAS  PubMed  Google Scholar 

  54. O’Gorman A, Morris C, Ryan M, O’Grada CM, Roche HM, Gibney ER, et al. Habitual dietary intake impacts on the lipidomic profile. J Chromatogr B Anal Technol Biomed Life Sci. 2014;966:140–6.

    Article  Google Scholar 

  55. Menni C, Zhai G, Macgregor A, Prehn C, Romisch-Margl W, Suhre K, et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics. 2013;9(2):506–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bouchard-Mercier A, Paradis AM, Rudkowska I, Lemieux S, Couture P, Vohl MC. Associations between dietary patterns and gene expression profiles of healthy men and women: a cross-sectional study. Nutr J. 2013;12:24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. The metabolic signature associated with the Western dietary pattern: a cross-sectional study. Nutr J. 2013;12:158.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Andersen MB, Rinnan A, Manach C, Poulsen SK, Pujos-Guillot E, Larsen TM, et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res. 2014;13(3):1405–18.

    Article  CAS  PubMed  Google Scholar 

  59. Pere-Trepat E, Ross AB, Martin FP, Rezzi S, Kochhar S, Hasselbalch AL, et al. Chemometric strategies to assess metabonomic imprinting of food habits in epidemiological studies. Chemom Intell Lab Syst. 2010;104(1):95–100.

    Article  CAS  Google Scholar 

  60. Floegel A, von Ruesten A, Drogan D, Schulze MB, Prehn C, Adamski J, et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr. 2013;67(10):1100–8.

    Article  CAS  PubMed  Google Scholar 

  61. Altmaier E, Kastenmuller G, Romisch-Margl W, Thorand B, Weinberger KM, Illig T, et al. Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur J Epidemiol. 2011;26(2):145–56.

    Article  PubMed  Google Scholar 

  62. Gibbons H, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, et al. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am J Clin Nutr. 2015;101(3):471–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following funding: FP7 Project NutriTech (289511) and SFI (14/JP-HDHL/B3075).

Compliance with Ethical Guidelines

Conflict of Interest

Lorraine Brennan has received research funding through grants from Science Foundation Ireland (support for participation in FoodBall) and the European Union (support for research projects NutriTech and A-DIET).

Helena Gibbons declares that she has no conflict of interest.

Aoife O’Gorman declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brennan.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennan, L., Gibbons, H. & O’Gorman, A. An Overview of the Role of Metabolomics in the Identification of Dietary Biomarkers. Curr Nutr Rep 4, 304–312 (2015). https://doi.org/10.1007/s13668-015-0139-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0139-1

Keywords

Navigation