Advertisement

Acorn weight as determinant of germination in red and white oaks: evidences from a common-garden greenhouse experiment

  • Erik J. Sánchez-Montes de Oca
  • Ernesto I. Badano
  • Lilia E. Silva-Alvarado
  • Joel Flores
  • Felipe Barragán-Torres
  • Jorge A. Flores-Cano
Original Article

Abstract

Key message

In Mexican oaks, germination increases with acorn fresh weight across oak species. Within species, these relationships are stronger in red oaks than in white oaks. In both oak groups, fresh weight of acorns increases with their dry biomass.

Context

Mexican oaks are phylogenetically grouped in red and white oaks. White oaks produce heavier acorns than red ones, but no studies have assessed whether this leads to different germination patterns.

Aims

This study was aimed to determine the influence of the fresh weight of acorns on their germination.

Methods

Acorns of red and white oaks were hydrated, weighed, and sowed under greenhouse conditions to assess whether their fresh weight was related with germination. We also assessed whether fresh weight of acorns was related with their dry biomass and/or water accumulation capability.

Results

Hydrated acorns of white oaks were heavier and germinated faster than those of red oaks. Germination percentages increased with acorn fresh weight across oak species. Within species, germination probability increased with acorn fresh weight, but these relationships were more marked in red oaks. Germination speed decreased with acorn fresh weight in red oaks, but these relationships were not found in white oaks. Fresh weight was positively related with acorn dry biomass in all oak species, but it was not related with water content.

Conclusion

Increasing acorn fresh weight enhances germination across oak species. Within species, however, this trait seems to have more influence in red than in white oaks.

Keywords

Lobatae Logistic regressions Mexico Quercus Seed size 

Notes

Acknowledgements

We thank the support of JP Rodas-Ortiz during the collection of acorns and the measurements performed in the laboratory. We also thank the valuable comments of the editors of the journal, which strongly contributed to improve the earlier versions of the manuscript. Erik J. Sánchez-Montes de Oca thanks the doctoral fellowship of Consejo Nacional de Ciencia y Tecnología de Mexico (no. 150830) and Lilia E. Silva-Alvarado thanks the fellowship provided by project SEP-CONACYT CB-2013/221623.

Funding

This work was supported by project SEP-CONACYT CB-2013/221623 to EIB.

Compliance with ethical standards

Conflict of interest

The authors state there are no conflicts of interests of any nature.

Supplementary material

13595_2018_693_MOESM1_ESM.pdf (385 kb)
ESM 1 (PDF 385 kb)

References

  1. Black M, Bewley JD, Halmer P (2006) The encyclopedia of seeds: science, technology and uses. CABI International, Wallingford.  https://doi.org/10.1079/9780851997230.0000 CrossRefGoogle Scholar
  2. Bonfil C (1998) The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceae). Am J Bot 85(1):79–87.  https://doi.org/10.2307/2446557 CrossRefPubMedGoogle Scholar
  3. Bruun H, Ten Brink D (2008) Recruitment advantage of large seeds is greater in shaded habitats. Ecoscience 15(4):498–507.  https://doi.org/10.2980/15-4-3147 CrossRefGoogle Scholar
  4. Burslem D, Miller J (2001) Seed size, germination and seedling relative growth rates in three tropical tree species. J Trop For Sci 13:148–161Google Scholar
  5. Chacón P, Bustamante RO (2001) The effects of seed size and pericarp on seedling recruitment and biomass in Cryptocarya alba (Lauraceae) under two contrasting moisture regimes. Plant Ecol 152(2):137–144.  https://doi.org/10.1023/A:1011463127918 CrossRefGoogle Scholar
  6. Chacón P, Bustamante R, Henriquez C (1998) The effect of seed size on germination and seedling growth of Cryptocarya alba (Lauraceae) in Chile. Rev Chil Hist Nat 71:189–197Google Scholar
  7. Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Ann Rev Ecol Syst 31(1):107–138.  https://doi.org/10.1146/annurev.ecolsys.31.1.107 CrossRefGoogle Scholar
  8. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511614101 CrossRefGoogle Scholar
  9. Foster SA (1986) On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. Bot Rev 52(3):260–299.  https://doi.org/10.1007/BF02860997 CrossRefGoogle Scholar
  10. García-Sánchez F, Aguirre-Rivera JR (2011) Guía de campo para la identificación de los árboles de sierra de Álvarez, SLP. Universidad Autónoma de San Luis Potosí, MéxicoGoogle Scholar
  11. Geritz SAH, van der Meijden E, Metz JAJ (1999) Evolutionary dynamics of seed size and seedling competitive ability. Theor Pop Biol 55(3):324–343.  https://doi.org/10.1006/tpbi.1998.1409 CrossRefGoogle Scholar
  12. Gómez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58(1):71–80.  https://doi.org/10.1111/j.0014-3820.2004.tb01574.x CrossRefPubMedGoogle Scholar
  13. González-Salvatierra C, Badano EI, Flores J, Rodas JP (2013) Germination, infestation, and viability in acorns of Quercus polymorpha (Schltdl. & Cham.) after 1-year storage. Rev Chapingo Ser Cienc For Ambient 19:351–362Google Scholar
  14. Gribko LS, Jones WE (1995) Test of the float method of assessing northern red oak acorn condition. Tree Planters’ Notes 46:143–147Google Scholar
  15. Gross KL (1984) Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants. J Ecol 72(2):369–387.  https://doi.org/10.2307/2260053 CrossRefGoogle Scholar
  16. Huerta-Paniagua R, Rodríguez-Trejo D (2011) Efecto del tamaño de semilla y la temperatura en la germinación de Quercus rugosa Née. Rev Chapingo Ser Cs For Amb 17(2):179–187.  https://doi.org/10.5154/r.rchscfa.2010.08.053 Google Scholar
  17. Jurado E, Westoby M (1992) Seedling growth in relation to seed size among species of arid Australia. J Ecol 80(3):407–416.  https://doi.org/10.2307/2260686 CrossRefGoogle Scholar
  18. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481.  https://doi.org/10.1080/01621459.1958.10501452 CrossRefGoogle Scholar
  19. Khan M, Shankar U (2001) Effect of seed weight, light regime and substratum microsite on germination and seedling growth of Quercus semiserrata Roxb. Trop Ecol 42:117–125Google Scholar
  20. Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28(01):39–52.  https://doi.org/10.1017/S0376892901000042 CrossRefGoogle Scholar
  21. Kleinbaum DG, Klein M (2012) Survival analysis. Springer, New York.  https://doi.org/10.1007/978-1-4419-6646-9 CrossRefGoogle Scholar
  22. Landergott U, Gugerli F, Hoebee SE, Finkeldey R, Holderegger R (2012) Effects of seed mass on seedling height and competition in European white oaks. Flora 207(10):721–725.  https://doi.org/10.1016/j.flora.2012.09.001 CrossRefGoogle Scholar
  23. Leishman M, Westoby M (1994) The role of seed size in seedling establishment in dry soil conditions—experimental evidence from semi-arid species. J Ecol 8(2):249–258.  https://doi.org/10.2307/2261293 CrossRefGoogle Scholar
  24. Leishman M, Wright I, Moles A, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CABI International, New York, pp 31–57.  https://doi.org/10.1079/9780851994321.0031 CrossRefGoogle Scholar
  25. Long TJ, Jones RH (1996) Seedling growth strategies and seed size effects in fourteen oak species native to different soil moisture habitats. Trees 11(1):1–8.  https://doi.org/10.1007/s004680050051 CrossRefGoogle Scholar
  26. Lopes-Souza M, Fagundes M (2014) Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5(17):2566–2573.  https://doi.org/10.4236/ajps.2014.517270 CrossRefGoogle Scholar
  27. Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann For Sci 50(Supplement):25s–34s.  https://doi.org/10.1051/forest:19930701 CrossRefGoogle Scholar
  28. Purohit VK, Tamta S, Nandi SK, Rikhari HC, Palni LMS (2003) Does acorn weight influence germination and subsequent seedling growth of central Himalayan oaks? J Trop Forest Sci 15:483–492Google Scholar
  29. Quero JL, Villar R, Marañón T, Zamora R, Poorter L (2007) Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am J Bot 94(11):1795–1803.  https://doi.org/10.3732/ajb.94.11.1795 CrossRefPubMedGoogle Scholar
  30. R Foundation (2016) R, a language and environment for statistical computing. Vienna, Austria. Available from: https://www.r-project.org
  31. Ramos-Palacios CR, Badano EI, Flores J, Flores-Cano JA, Flores-Flores JL (2014) Distribution patterns of acorns after primary dispersion in a fragmented oak forest and their consequences on predators and dispersers. Eur J For Res 133(3):391–404.  https://doi.org/10.1007/s10342-013-0771-5 CrossRefGoogle Scholar
  32. Roach DA, Wulff RD (1987) Maternal effects in plants. Ann Rev Ecol Syst 18(1):209–235.  https://doi.org/10.1146/annurev.es.18.110187.001233 CrossRefGoogle Scholar
  33. Romero-Rangel S, Rojas-Zenteno EC, Rubio-Licona LE (2014) Fagaceae. Flora del Bajío y de regiones adyacentes 181:1–167Google Scholar
  34. Rubio-Licona LE, Romero-Rangel S, Rojas-Zenteno EC, Durán-Díaz A, Gutiérrez-Guzmán JC (2011) Variación del tamaño de frutos y semillas en siete especies de encino (Quercus, Fagaceae). Polibotánica 32:135–151Google Scholar
  35. Silvertown JW (1989) Seed size, life span, and germination date as coadapted features of plant life history. Am Nat 118:860–864CrossRefGoogle Scholar
  36. Tripathi R, Khan M (1990) Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos 57(3):289–296.  https://doi.org/10.2307/3565956 CrossRefGoogle Scholar
  37. Valencia AS (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Mex 75:33–53Google Scholar
  38. Venable DL, Brown JS (1988) The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am Nat 131(3):360–384.  https://doi.org/10.1086/284795 CrossRefGoogle Scholar
  39. Venable D, Rees M (2009) The scaling of seed size. J Ecol 97(1):27–31.  https://doi.org/10.1111/j.1365-2745.2008.01461.x CrossRefGoogle Scholar
  40. Westoby M, Jurado E, Leishman M (1992) Comparative evolutionary ecology of seed size. Trends Ecol Evol 7(11):368–372.  https://doi.org/10.1016/0169-5347(92)90006-W CrossRefPubMedGoogle Scholar
  41. Yi X, Wang Z (2016) The importance of cotyledons for early-stage oak seedlings under different nutrient levels: a multi-species study. J Plant Growth Regul 35(1):183–189.  https://doi.org/10.1007/s00344-015-9516-7 CrossRefGoogle Scholar
  42. Zar JH (2010) Biostatistical analysis, 5th edn. Pearson, New JerseyGoogle Scholar
  43. Zavala-Chávez F (2001) Introducción a la ecología de la regeneración natural de encinos. Universidad Autonoma Chapingo, MéxicoGoogle Scholar
  44. Zavala-Chávez F (2004) Desecación de bellotas y su relación con la viabilidad y germinación en nueve especies de encinos mexicanos. Ciencia Ergo Sum 11:177–185Google Scholar
  45. Zavala-Chávez F (2008) Efecto del almacenamiento sobre la viabilidad y germinación de bellotas de Quercus rugosa y Quercus grabrescens. Rev Sci For Mex 33:15–25Google Scholar
  46. Zavala-Chávez F, García-Moya E (1996) Frutos y semillas de encinos. Universidad Autónoma Chapingo, MéxicoGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Erik J. Sánchez-Montes de Oca
    • 1
  • Ernesto I. Badano
    • 1
  • Lilia E. Silva-Alvarado
    • 1
  • Joel Flores
    • 1
  • Felipe Barragán-Torres
    • 1
    • 2
  • Jorge A. Flores-Cano
    • 3
  1. 1.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y Tecnológica, A.CSan Luis PotosíMexico
  2. 2.CONACYT-IPICYTSan Luis PotosíMexico
  3. 3.Facultad de Agronomía y VeterinariaUniversidad Autónoma de San Luis PotosíSoledad de Graciano SánchezMexico

Personalised recommendations