Skip to main content
Log in

Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In a longitudinal setup, the so-called generalized estimating equations approach was a popular inference technique to obtain efficient regression estimates until it was discovered that this approach may in fact yield less efficient estimates than an independence assumption-based estimating equation approach. In this paper, we revisit this inference issue in a semi-parametric longitudinal setup for binary data and find that the semi-parametric generalized estimating equations also encounter similar efficiency drawbacks when compared with independence assumption-based approach. This makes the generalized estimating equations approach unacceptable for correlated data analysis. We analyze the repeated binary data by fitting a semi-parametric binary dynamic model. The non-parametric function and the regression parameters involved in the semi-parametric regression function are estimated by using a semi-parametric generalized quasi-likelihood and a semi-parametric quasi-likelihood approach, respectively, whereas the dynamic dependence, that is, the correlation index parameter of the model is estimated by a semi-parametric method of moments. Asymptotic and finite sample properties of the estimators are discussed. The proposed model and the estimation methodology are also illustrated by reanalyzing the well-known respiratory disease data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya, T. (1985). Advanced Econometrics. Cambridge: Harvard University Press.

  • Bahadur, R.R. (1961). A representation of the joint distribution of responses to n dichotomous items. In Studies in Item Analysis and Prediction. Stanford Mathematical Studies in the Social Sciences; Solomon, H., Ed.; Vol. 6, 158-168.

  • Breiman, L. (1968). Probability. Addison-Wesley Pub. Co.

  • Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal of American Statistical Association, 88, 9–25.

    MATH  Google Scholar 

  • Diggle, P.J., Liang, K.Y. and Zeger, S.L. (1994). Analysis of Longitudinal Data, Oxford, U. K.: Oxford University Press.

  • Horowitz, J.L. (2009). Semiparametric and Nonparametric Methods in Econometrics. New York: Springer.

  • Jowaheer, V. and Sutradhar, B.C. (2002). Analysing longitudinal count data with overdispersion. Biometrika, 89, 389–399.

    Article  MathSciNet  Google Scholar 

  • Kaufmann, H. (1987). Regression models for nonstationary categorical time series: Asymptotic estimation theory. The Annals of Statistics, 15, 79–98.

    Article  MathSciNet  Google Scholar 

  • Liang, K. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.

    Article  MathSciNet  Google Scholar 

  • Lin, X. and Carroll, R.J. (2001). Semiparametric regression for clustered data using generalized estimating equations. J. Am. Statist. Ass., 96, 1045–1056.

    Article  MathSciNet  Google Scholar 

  • Lin, X. and Carroll, R.J. (2006). Semi-parametric estimation in general repeated measures problems. Journal of Royal Statistical Society, 68, 69–88.

    Article  MathSciNet  Google Scholar 

  • Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics. Cambridge: Cambridge University Press.

  • Powell, J.L. and Stoker, T.M. (1996). Optimal bandwidth choice for density weighted averages. Journal of Econometrics, 75, 291–316.

    Article  MathSciNet  Google Scholar 

  • Severini, T.A. and Staniswallis, J.G. (1994). Quasi-likelihood estimation in semiparametric models. Journal of American Statistical Association, 89, 501–511.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B.C. (2003). An overview on regression models for discrete longitudinal responses. Statistical Science, 18, 377–393.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B.C. (2011). Dynamic Mixed Models for Familial Longitudinal Data. New York: Springer.

  • Sutradhar, B.C. (2010). Inferences in generalized linear longitudinal mixed models. Canadian Journal of Statistics, Special issue, 38, 174–196.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. and Das, K. (1999). On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 86, 459–65.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B.C. and Kovacevic, M. (2000). Analysing ordinal longitudinal survey data : Generalized estimating equations approach. Biometrika, 87, 837–848.

    Article  MathSciNet  Google Scholar 

  • Thall, P.F. and Vail, S.C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657–71.

    Article  MathSciNet  Google Scholar 

  • Warriyar, K.V.V. and Sutradhar, B.C. (2014). Estimation with improved efficiency in semi-parametric linear longitudinal models. Brazilian J. of Probability and Statistics, 28, 561–586.

    Article  MathSciNet  Google Scholar 

  • Weddurburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439–447.

    MathSciNet  Google Scholar 

  • Zeger, S.L. and Diggle, P.J. (1994). Semi-parametric Models for Longitudinal Data With Application to CD4 Cell Numbers in HIV Seroconverters. Biometrics, 50, 689– 699.

    Article  Google Scholar 

  • Zeger, S.L. and Karim, M.R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of American Statistical Association, 86, 79–86.

    Article  MathSciNet  Google Scholar 

  • Zeger, S.L., Liang, K.Y. and SELF, S.G. (1985). The analysis of binary longitudinal data with time independent covariates. Biometrika, 72, 31–38.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a NSERC grant. The authors wish to thank two referees for their valuable comments and suggestions leading to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra C. Sutradhar.

Appendix: Asymptotic Properties of the Estimators of the SLDCP Model

Appendix: Asymptotic Properties of the Estimators of the SLDCP Model

The following regularity conditions and/or assumptions (A) are needed to study the asymptotic properties of the estimators of the non-parametric functionψ(⋅), and the parameters β and ρ, for the SLDCP model (2.1).

A.1.

The mean function μij(⋅) in model (2.1) is continuous and

$$\frac{\partial^{r} \mu_{ij}(\cdot)}{\partial {\psi(z_{0})}^{r}} < \infty\;\text{for}\;r = 1,2. $$

A.2.

For i = 1,…,K, the estimating functions

$$f_{i}(\beta)=\frac{\partial [\tilde{\mu}_{i}(\beta, \hat{\psi}(\beta))]'}{\partial \beta} ~~[\tilde{{\Sigma}}_{i}(\beta, \rho,\hat{\psi}(\beta))]^{-1}~ [y_{i} -\tilde{\mu}_{i}(\beta,\hat{\psi}(\beta))]$$

from Eq. 3.12, with \(V^{*}_{K}={\sum }^{K}_{i = 1}\text {cov}[f_{i}(\beta )],\) satisfy the Lindeberg’s condition (Amemiya, 1985, Theorem 3.3.6), that is,

$$\lim_{K \rightarrow \infty}{{V}^{*}}^{-1}_{K}{\sum}^{K}_{i = 1}{\sum}_{(f^{\top}_{i} {{V}^{*}}^{-1}_{K} f_{i} ) >\epsilon}f_{i}f^{\top}_{i}g(f_{i})= 0 $$

for all 𝜖 > 0,g(⋅) being the probability distribution of fi(β). [A proof for the Lindeberg condition in the context of categorical/binary time series data is available in Kaufmann (1987, pp. 89, 93)].

A.3.

Recall from the estimating equation (3.14) for ρ that the standardized residuals are defined as \(y_{ij}^{*} = [y_{ij} - \mu _{ij}(\beta ,x_{ij}, \psi (z_{ij}))]/\sqrt {\sigma _{i,jj}(\beta ,x_{ij}, \psi (z_{ij}))}\). For two fixed quantities M1 and M2, we now assume that the lag 1 sum of products and sum of squares have bounded variances satisfying

$$\begin{array}{@{}rcl@{}} \mathrm{E}\left[ \left( {\sum}_{j = 1}^{n_{i}-1}\left[ Y_{ij}^{*}Y_{i,j + 1}^{*} - \frac{\sigma_{i,j,j + 1}}{\sqrt{\sigma_{ijj}\sigma_{i,j + 1,j + 1}}} \right]\right)^{2} \right] &<& M_{1},\;\text{and} \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathrm{E}\left[ \left( {\sum}_{j = 1}^{n_{i}}\left[ {Y_{ij}^{*}}^{2} - 1 \right]\right)^{2} \right] &<& M_{2}, \end{array} $$

respectively.

  • Consistency of \(\hat {\psi }(\cdot )\)]

For convenience, in Eq. 3.6, we have shown the estimation for ψ(z0) for z0zu for a selected value of ( = 1,…,K) and u(u = 1,…,n). For notational simplicity, here we use μij(z0) for μij(β,xij,ψ(z0)). Now for known β, and for true binary mean μijμij(β,xij,ψ(zij)) given by Eq. ??, a Taylor expansion of \(f(\psi (z_{0}),\beta )={\sum }_{i = 1}^{K} {\sum }^{n_{i}}_{j = 1}w_{ij}(z_{0}) [y_{ij}- \mu _{ij}(\beta ,x_{ij}, \psi (z_{0}))]\) (3.6) under the assumption A.1 gives

$$\begin{array}{@{}rcl@{}} &&\!\!\!\!\hat{\psi}(z_{0};\beta) - \psi(z_{0}) \approx \frac{{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0})\left[y_{ij} - \mu_{ij}(z_{0})\right]} {{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0})\mu_{ij}(z_{0})\left[1-\mu_{ij}(z_{0})\right]} =\frac{f(\psi(z_{0}),\beta)}{f^{\prime}_{\psi(z_{0})}(\psi(z_{0}),\beta)} \\ &{}=&\!\!\!\! \frac{1}{f^{\prime}_{\psi(z_{0})}(\psi(z_{0}),\beta)} \left[{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0})\left[y_{ij} - \mu_{ij}\right] + {\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0})\left[\mu_{ij} - \mu_{ij}(z_{0})\right]\right] \\ &{}=&\!\!\!\! A_{K} + \frac{1}{f^{\prime}_{\psi(z_{0})}(\psi(z_{0}),\beta)}{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0}) \left[\mu_{ij} - \mu_{ij}(z_{0})\right] \,, \end{array} $$
(1.1)

where

$$\begin{array}{@{}rcl@{}} A_{K}&=&\frac{1}{B_{K}}\frac{1}{K}{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}p_{ij}(z_{0})\left( y_{ij} - \mu_{ij}\right) \; \text{with} \\ B_{K} &=&\frac{1}{K}{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}p_{ij}(z_{0})\mu_{ij}(z_{0}) \left[1-\mu_{ij}(z_{0})\right], \end{array} $$

with \(p_{ij}(z_{0}) \equiv p_{ij}(\frac {z_{0}-z_{ij}}{b})\) as the kernel density defined in Eq. 3.4. Here, bKα for a suitable α(Lin and Carroll 2001; Pagan and Ullah, 1999, p. 28). Notice that E[AK] = 0 and

$$\text{Var}[A_{K}] = \frac{1}{{B_{K}^{2}}}\frac{1}{K^{2}}{\sum}_{i = 1}^{K} \text{Var}\left[{\sum}_{j = 1}^{n_{i}}p_{ij}(z_{0}) Y_{ij}\right] = \frac{1}{K} Q_{k} $$

with \(Q_{K} = \frac {1}{{B_{K}^{2}}}\frac {1}{K}{\sum }_{i = 1}^{K} \text {Var}\left [{\sum }_{j = 1}^{n_{i}}p_{ij}(z_{0}) Y_{ij}\right ] = O(1)\). It then follows, for example, from Amemiya (1985, Theorem 14.4-1) that

$$\begin{array}{@{}rcl@{}} A_{K} &=& o_{p}(1/\sqrt{K}). \end{array} $$
(1.2)

Next by using

$$\mu_{ij} - \mu_{ij}(z_{0}) = \mu_{ij}(z_{0})\left[1-\mu_{ij}(z_{0})\right]\psi^{\prime}(z_{0})(z_{ij}-z_{0}) + O\left( (z_{ij}-z_{0})^{2}\right), $$

after some algebras, the second term in Eq. 6.1 may be expressed as

$$\begin{array}{@{}rcl@{}} &&\frac{1}{f^{\prime}_{\psi(z_{0})}(\psi(z_{0}),\beta)}{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}w_{ij}(z_{0}) \left[\mu_{ij} - \mu_{ij}(z_{0})\right] \\ &=&\frac{\psi^{\prime}(z_{0})\frac{1}{K}\sum\limits_{i = 1}^{K}\sum\limits_{j = 1}^{n_{i}}p_{ij}(z_{0})\, \mu_{ij}(z_{0})\left[1-\mu_{ij}(z_{0})\right](z_{ij}-z_{0})} {\frac{1}{K}\sum\limits_{i = 1}^{K}\sum\limits_{j = 1}^{n_{i}}p_{ij}(z_{0})\,\mu_{ij}(z_{0}) \left[1-\mu_{ij}(z_{0})\right]} + O(b^{2})\\ &=&O(b^{2}), \end{array} $$
(1.3)

because E[zijz0] for a symmetric such as Gaussian kernel. Thus, by using Eqs. 6.3 and 6.2 in Eq. 6.1, one obtains

$$ \hat{\psi}(z_{0};\beta) - \psi(z_{0}) =o_{p}(1/\sqrt{K})+O(b^{2}), $$
(1.4)

showing that \(\hat {\psi }(z_{0};\beta )\) is consistent for ψ(z0) provided Kb4 → 0 as K, that is, \(K\frac {1}{K^{4\alpha }}=\frac {1}{K^{4\alpha -1}}\rightarrow 0\) yielding the condition α > 1/4. Note that this convergence result is obtained by minimizing the bias of the estimator(see Eq. 6.1).

  • Asymptotic Normality and Consistency of \(\hat {\beta }_{SGQL}\)

Recall that the SGQL estimator \(\hat {\beta }_{SGQL}\) of β is obtained by solving the estimating equation (3.12). Suppose that for true β, the estimating function in Eq. 3.12 is denoted as

$$D_{K}(\beta)= \frac{1}{K}{\sum}_{i = 1}^{K} \frac{\partial [\tilde{\mu}_{i}(\beta, \hat{\psi}(\beta))]'}{\partial \beta} ~~[\tilde{{\Sigma}}_{i}(\beta, \rho,\hat{\psi}(\beta))]^{-1}~ [y_{i} -\tilde{\mu}_{i}(\beta,\hat{\psi}(\beta))]. $$

Thus, \(\hat {\beta }_{SGQL}\) must satisfy \(D_{K}(\hat {\beta }_{SGQL})= 0\) which by a linear Taylor expansion about true β provides

$$ D_{K}(\beta)+(\hat{\beta}_{SGQL}-\beta)D^{\prime}_{K}(\beta)+o_{p}(1/\sqrt{K})= 0, $$
(1.5)

yielding

$$\begin{array}{@{}rcl@{}} \hat{\beta}_{SGQL}-\beta &=& -\left[D^{\prime}_{K}(\beta)\right]^{-1}[D_{K}(\beta)+o_{p}(1/\sqrt{K})] \\ &=&F^{-1}_{K}(\beta)D_{K}(\beta)+o_{p}(1/\sqrt{K}), \end{array} $$
(1.6)

where

$$F_{K}(\beta) = \frac{1}{K} {\sum}_{i = 1}^{K} \frac{\partial [\tilde{\mu}_{i}(\beta, \hat{\psi}(\beta))]'}{\partial \beta} ~~[\tilde{{\Sigma}}_{i}(\beta, \rho,\hat{\psi}(\beta))]^{-1}~ \frac{\partial \tilde{\mu}_{i}(\beta, \hat{\psi}(\beta))}{\partial \beta}.$$

Notice that in Eq. 6.6, one may write

$$F = \lim_{K\rightarrow\infty}F_{K} = \mathrm{E}_{\hat{\psi}}\left[\frac{\partial \tilde{\mu}_{i}^{\prime}(\beta, \hat{\psi}(z_{i};\beta) )}{\partial\beta}\,{\tilde{{\Sigma}}_{i}}^{-1}(\beta, \hat{\psi}(z_{i}; \beta), {\rho})\frac{\partial \tilde{\mu}_{i}(\beta, \hat{\psi}(z_{i};\beta))}{\partial\beta^{\prime}}\right]. $$

Next by using \(Z_{1i} = \frac {\partial \tilde {\mu }_{i}^{\prime }(\beta , \hat {\psi }(z_{i};\beta ) )}{\partial \beta }\,{\tilde {{\Sigma }}_{i}}^{-1}(\beta , \hat {\psi }(z_{i}; \beta ), {\rho }),\) and \(v_{1i}^{jk}\) as the (j,k)th element of \({\tilde {{\Sigma }}_{i}}^{-1},\) the estimating function DK(β) in Eq. 6.6 may be expressed as

$$\begin{array}{@{}rcl@{}} D_{K}(\beta)\!\!\!&=&\!\!\! \frac{1}{K} {\sum}_{i = 1}^{K}Z_{1i} \left( Y_{i} - \mu_{i} \right) \\ &-&\!\!\!\frac{1}{K} {\sum}_{i = 1}^{K}\frac{\partial \tilde{\mu}_{i}^{\prime}(\beta, \hat{\psi}(z_{i};\beta) )}{\partial\beta}\,{\tilde{{\Sigma}}_{i}}^{-1}(\beta, \hat{\psi}(z_{i}; \beta), {\rho})\\&& \times\left[ \tilde{\mu}_{i}(\beta, \hat{\psi}(z_{i};\beta) ) - \mu_{i}(\beta, \psi(z_{i})) \right] \\ &=&\!\!\! \frac{1}{K} {\sum}_{i = 1}^{K}Z_{1i} \left( Y_{i} - \mu_{i} \right) -\frac{1}{K} {\sum}_{i = 1}^{K} {\sum}_{j = 1}^{n_{i}} {\sum}_{k = 1}^{n_{i}}\frac{\partial \tilde{\mu}_{ij}(\beta, \hat{\psi}(z_{ij};\beta))}{\partial\beta}\,v_{1i}^{jk}(\beta, \hat{\psi}, {\rho}) \\ &\times &\!\!\! \mu_{ik}(\beta, \psi(z_{ik})) \left[1-\mu_{ik}(\beta, \psi(z_{ik}))\right] \left[ \hat{\psi}(z_{ik};\beta) - \psi(z_{ik}) \right] + o_{p}(1/\sqrt{K}) \\ &=&\!\!\!\frac{1}{K}{\sum}^{K}_{i = 1}(Z_{1i}-Z_{2i})(Y_{i}-\mu_{i})+O(b^{2})+o_{p}(1/\sqrt{K}), \end{array} $$
(1.7)

by Eq. 6.4, where \(Z_{2i} = \left (Z_{2i1},\cdots , Z_{2in_{i}}\right )\) with

$$\begin{array}{@{}rcl@{}} Z_{2ij}&=& \frac{1}{K}{\sum}_{i^{\prime}= 1}^{K} {\sum}_{j^{\prime}= 1}^{n_{i}} {\sum}_{k^{\prime}= 1}^{n_{i}}\frac{1}{B_{K}(z_{i^{\prime}k^{\prime}})}\frac{\partial \tilde{\mu}_{i^{\prime}j^{\prime}}(\beta, \hat{\psi}(z_{i^{\prime}j^{\prime}};\beta))}{\partial\beta}\,v_{1i^{\prime}}^{j^{\prime}k^{\prime}}(\beta, \hat{\psi}, {\rho})\\ &\times& \mu_{i^{\prime}k^{\prime}}(\beta, \psi(z_{i^{\prime}k^{\prime}})) \left[1-\mu_{i^{\prime}k^{\prime}}(\beta, \psi(z_{i^{\prime}k^{\prime}}))\right]\,p_{ij}(z_{i^{\prime}k^{\prime}}), \end{array} $$

where BK and the kernel density pij(z0) are defined in Eq. 6.1. Hence by using (6.7) in Eq. 6.6, one obtains

$$\begin{array}{@{}rcl@{}} \sqrt{K}\left\{ \hat{\beta}_{SGQL} - \beta \right\} &=& F^{-1} \frac{1}{\sqrt{K}}{\sum}_{i = 1}^{K} \left( Z_{1i} - Z_{2i}\right)(Y_{i} - \mu_{i}) \\ & +& O(\sqrt{K b^{4}}) + o_{p}(1). \end{array} $$
(1.8)

Now because E[Yiμi] = 0, and cov[Yi] = Σi, by applying the assumption A.2, we can use the Lindeberg-Feller central limit theorem (Amemiya, 1985, Theorem 3.3.6) for independent random variables with non-identical distributions, and obtain

$$\begin{array}{@{}rcl@{}} \sqrt{K}\left\{ \hat{\beta}_{SGQL}- \beta - O(b^{2}) \right\} &\rightarrow& N(0,V_{\beta}), \end{array} $$
(1.9)

where

$$V_{\beta} = F^{-1}\frac{1}{K}\left[{\sum}_{i = 1}^{K} \left( Z_{1i} - Z_{2i}\right){\Sigma}_{i}\left( Z_{1i} - Z_{2i}\right)'\right]F^{-1}.$$
  • Consistency of \(\hat {\tilde {\rho }}\)

We prove the consistency for known β and ψ(zij). The result remains valid when β and ψ(zij) are replaced by their respective consistent estimates. Notice that for known β and ψ(zij), the moment estimator of ρ is given by Eq. 3.14. Now because Yij’s are independent for different i, and also because the variances of the lag 1 sum of products and sum of squares are bounded by assumption A.3, for K, we may apply the law of large numbers for independent random variables (Breiman, 1968, Theorem 3.27) and obtain

$$\begin{array}{@{}rcl@{}} && \frac{{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}-1}\left( y_{ij}^{*}y_{i,j + 1}^{*} - \frac{\sigma_{i,j,j + 1}}{\sqrt{\sigma_{ijj}\sigma_{i,j + 1,j + 1}}} \right)}{{\sum}_{i = 1}^{K}(n_{i}-1)} \xrightarrow{P} 0\\ &\!\Rightarrow\! & \frac{{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}-1}y^{*}_{ij}y^{*}_{i,j + 1}}{{\sum}_{i = 1}^{K}(n_{i}-1)} = \frac{\rho{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}-1}\frac{\sqrt{\sigma_{ijj}}}{\sqrt{\sigma_{i,j + 1,j + 1}}}}{{\sum}_{i = 1}^{K}(n_{i}-1)} + o_{p}(1). \end{array} $$
(1.10)

Similarly,

$$\begin{array}{@{}rcl@{}} \frac{{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}\left( {y_{ij}^{*}}^{2}-1\right)}{{\sum}_{i = 1}^{K}n_{i}} &\xrightarrow{P}& 0\hspace{10mm}\Rightarrow\\ \frac{{\sum}_{i = 1}^{K}{\sum}_{j = 1}^{n_{i}}{y_{ij}^{*}}^{2}}{{\sum}_{i = 1}^{K}n_{i}} &=& 1 + o_{p}(1). \end{array} $$
(1.11)

Dividing (6.10) by Eq. 6.11, after some algebras, one obtains

$$\begin{array}{@{}rcl@{}} \hat{\rho} = \frac{\sum\limits_{i = 1}^{K}\sum\limits_{j = 1}^{n_{i}-1}y^{*}_{ij}y^{*}_{i,j + 1}}{ \sum\limits_{i = 1}^{K}\sum\limits_{j = 1}^{n_{i}}{y_{ij}^{*}}^{2}} \frac{\sum\limits_{i = 1}^{K} n_{i}}{\sum\limits_{i = 1}^{K}\sum\limits_{j = 1}^{n_{i}-1}\left[\frac{\sigma_{ijj}}{\sigma_{i,j + 1,j + 1}}\right]^{\frac{1}{2}}} &\xrightarrow{P}& \rho \hspace{3mm}\text{as \(K\rightarrow \infty\)\,.} \end{array} $$
(1.12)

The consistency for \(\hat {\tilde {\rho }}\) in Eq. 3.15 follows from Eq. 6.12 because of the fact that \(\hat {\tilde {\rho }}\) was constructed by putting consistent estimates forβ and ψ(zij) in the formula for \(\hat {\rho }\) in Eq. 3.14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, B.C., Zheng, N. Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup. Sankhya B 80, 263–291 (2018). https://doi.org/10.1007/s13571-018-0160-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-018-0160-7

Keywords and phrases

AMS (2000) subject classification

Navigation