Skip to main content

Advertisement

Log in

Revisiting the long-run energy mix with the global energy market model (GEM)

  • Original Paper
  • Published:
Mineral Economics Aims and scope Submit manuscript

Abstract

The objective of this paper is to estimate the long-run energy mix—i.e., the combination of resources including solids, liquids, and gases that will satisfy energy demand to the year 2040—with a Global Energy Market model (GEM). The GEM first provides a close match of the historical energy mix dating back to 1850 and is then used to make forecasts for the future. Originally developed in 2007, the model was used at that time to project the energy mix to the year 2030. The original findings from 2007 introduced a “2030 1/3 forecast,” indicating that solids, liquids, and gases would each occupy a third of the energy market in 2030. After further disaggregating the categories, it was found that liquids, mostly oil, would experience a declining market share by 2030 while natural gas would see a rapid rise. The solids’ share, mostly coal, was relatively flat by that time. This paper uses the most recent statistics of the last 10 years on consumption of different energy sources to verify the accuracy of the original GEM baseline scenario carried out in 2007. Once the results are proven reasonable, the scenario’s time horizon is extended to the year 2040—a limit in which outcomes can be reasonably conceptualized and quantified. Our findings show continued penetration of natural gas in the energy mix—a result consistent with efforts to reduce carbon emissions. In reality, that outcome will be contingent on the enactment of policies that encourage the development, transportation, and consumption of gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Alternative variations of this sequence can also be modeled and would yield similar results (e.g., solids plus liquids, with gases as the residual). However, the chosen pairing simplifies the modeling since the solids and gases fractions are modified linear functions with negative and positive slopes, respectively. Therefore, specifying these modified linear functions is simpler than specifying a nonlinear bell-shaped equation for liquids.

  2. Although all energy sources have been grouped into the solids, liquids and gases categories, the GEM is also capable of generating scenarios with further disaggregation; e.g., as in Figure 5.

References

  • Aguilera RF (2006) Assessing the long run availability of global fossil energy resources. PhD Dissertation, Colorado School of Mines

  • Aguilera RF and Aguilera R (2007) Assessing the past, present, and near future of the global energy market. SPE paper 110215-PP presented at the annual technical conference and exhibition held in Anaheim, California, USA, November 11-14. https://doi.org/10.2118/110215-MS

  • Aguilera RF and Aguilera R (2008) Assessing the past, present, and near future of the global energy market. J Petrol Technol 36–39.

  • Aguilera RF, Aguilera R (2012) World natural gas endowment as a bridge towards zero carbon emissions. Technol Forecast Soc Change 79:579–586

    Article  Google Scholar 

  • Aguilera RF, Radetzki M (2014) The shale revolution: global gas and oil markets under transformation. Miner Econ 26:75–84

    Article  Google Scholar 

  • Aguilera RF, Radetzki M (2015) The price of oil. Cambridge University Press, Cambridge

    Google Scholar 

  • BP, annual, Statistical Review of World Energy. British Petroleum, United Kingdom

  • Fisher JC and Pry RH (1970) A simple solution model of technological change. Report 70_C-215, General Electric Company, Research and Development Center, New York

  • Grubler A (2004) Transitions in energy use. Encycl Energy 6:163–177

    Google Scholar 

  • Hefner III RA (2002) The age of energy gases in the new millennium, the GHK company, Oklahoma City, OK (2002). Based on presentations at 10th Repsol-Harvard Seminar on Energy Policy in Madrid, Spain, June 1999, and the SPE Gas Technology Symposium in Calgary, Canada, April 30

  • Hefner RA III (2009) The grand energy transition: the rise of energy gases, sustainable life and growth, and the next great economic expansion. John Wiley & Sons, New Jersey

    Google Scholar 

  • International Energy Agency (2016) World energy outlook. Paris, France

  • Marchetti C and Nakicenovic N (1979) The dynamics of energy systems and the logistic substitution model. Report RR-79-13, International Institute for Applied Systems Analysis (IIASA) Publications, Laxenburg

  • Marchetti C (1985) Nuclear plants and nuclear niches. Nucl Sci Eng 90:521–526

    Article  Google Scholar 

  • Organization of the Petroleum Exporting Countries (2016) World Oil Outlook. Vienna, Austria

  • Radetzki M, Wårell L (2017) A handbook of primary Commodities in the Global Economy, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Söderholm P (2001) Fuel for thought: European energy market restructuring and the future of power generation gas use. Int J Global Energy Issues 16(4):313–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. Aguilera.

Additional information

An earlier version of this paper was presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, held on 17–19 May 2017, in Buenos Aires, Argentina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, R.F., Aguilera, R. Revisiting the long-run energy mix with the global energy market model (GEM). Miner Econ 31, 221–227 (2018). https://doi.org/10.1007/s13563-017-0129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13563-017-0129-4

Keywords

Navigation