Skip to main content
Log in

Evolution of Statistical Properties of Hybrid System Starting from Binary Field States Constructed in Experiments

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In quantum optics, researchers usually study evolution of states starting from traditional ones: coherent, squeezed, Fock, and their superpositions. In a recent work (Ferreira et al. Int. J. Mod. Phys. B, 1850222, 2018), we discussed an example of ex- periment involving “atom”-field interaction allowing us to construct a list of field states inside a high-Q microwave cavity. The procedure employed a dispersive Hamiltonian ensuring both sub-systems to remain with only two Fock state components for all times of their evolution. The aim was to use this sequence of states having pre-selected properties as initial states in other investigations. Here, we use an updated platform and a variety of states at our disposal in the mentioned list to study the evolution of a hybrid system under the action of the Jaynes-Cummings Hamiltonian. Interesting results are obtai- ned, e.g., when we examine how the “atomic” population inversion and field statistics evolve in time from initial field states with different degrees of super- and sub-Poissonian effects. The experimental feasibility of the proposal was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J.S. Ferreira, C. Valverde, B. Baseia, Atom-field interaction in optical cavities: calibration of the atomic velocities to obtain a list of field states with preselected properties, Int. J. Mod. Phys. B, 1850222 (2018)

  2. D. Stoler, Equivalence classes of minimum uncertainty packets. Phys. Rev. D. 1, 3217 (1970)

    ADS  Google Scholar 

  3. D.F. Walls, Squeezed states if light. Nature. 306, 141 (1983)

    ADS  Google Scholar 

  4. M. Dagenais, L. Mandel, Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A. 18, 2217 (1978)

    ADS  Google Scholar 

  5. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  6. H.J. Carmichael, D.F. Wall, A quantum mechanical master equation treatment of the dynamical Stark effect. J. Phys. B. 9, 1199 (1976)

    ADS  Google Scholar 

  7. H.J. Kimble, M. Degenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    ADS  Google Scholar 

  8. R. Brouri, et al., Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000). and references [12,13] therein

    ADS  Google Scholar 

  9. B. Short, L. Mandel, Observation of Sub-Poissonian photon statistics. Phys. Rev. Lett. 51, 384 (1983)

    ADS  Google Scholar 

  10. G. Rempe, F. Schmidt-Kaler, H. Walther, Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783 (1990). and references therein

    ADS  Google Scholar 

  11. R.E. Slusher, et al., Observation of squeezed states generated by Four-Wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

    ADS  Google Scholar 

  12. L.-A. Wu, et al., Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

    ADS  Google Scholar 

  13. G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in one atom maser. Phys. Rev. Lett. 58, 353 (1987)

    ADS  Google Scholar 

  14. M. Greiner, et al., Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature. 419, 51–54 (2002)

    ADS  Google Scholar 

  15. P. Meystre, Cavity quantum optics and the quantum measurement process. Prog. Opt. 30, 261 (1992)

    MathSciNet  Google Scholar 

  16. P.R. Berman. Cavity Quantum Electrodynamics (Academic Press, Boston, 1994)

    Google Scholar 

  17. J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  18. M. Brune, et al., Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. 65, 976 (1990)

    ADS  Google Scholar 

  19. L. Davidovich, et al., Mesoscopic quantum coherences in cavity QED: preparation and decoherence monitoring schemes. Phys. Rev. A. 53, 1295 (1996)

    ADS  Google Scholar 

  20. Z.-L. Xiang, et al., Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  21. J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature. 29, 474 (2011)

    Google Scholar 

  22. C. Valverde, V. G. Gonçalves, B. Baseia, Controlling the nonclassical properties of a hybrid Cooper pair box system and an intensity dependent nanomechanical resonator. Phys. A. 446, 171 (1916)

    MATH  Google Scholar 

  23. M. Brune, et al., Observing the decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)

    ADS  Google Scholar 

  24. P. Wolfang, et al., Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882 (2017)

    Google Scholar 

  25. M. Brune, et al., Manipulation of photons in a cavity by dispersive atom- field coupling: Quantum-nondemolition measurements and generation of “Schrodinger cat” states. Phys. Rev. A. 45, 5193 (1992)

    ADS  Google Scholar 

  26. E.I. Duzzioni, et al., Nonadiabatic geometric phase induced by a counterpart of the Stark shift. Europhys. Lett. 72, 21 (2005)

    ADS  MathSciNet  Google Scholar 

  27. J.G. Peixoto de Faria, M.C. Nemes, Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: analytical results. Phys. Rev. A. 59, 3918 (1999)

    ADS  Google Scholar 

  28. L.G. Lutterbach, L. Davidovich, Method for direct measurement of the wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78(13), 2547 (1997)

    ADS  Google Scholar 

  29. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    ADS  MathSciNet  Google Scholar 

  30. H.M. Nussenzveig. Introduction to Quantum Optics (Gordon and Breach, London, 1973)

    Google Scholar 

  31. C.C. Gerry, P.L. Knight. Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005), p. 105

    Google Scholar 

  32. C.M.A. Dantas, B. Baseia, Noncoherent states having Poissonian statistics. Phys. A. 265, 176 (1999)

    Google Scholar 

  33. D.T. Pegg, L.S. Phillips, S.M. Barnett, Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604 (1998)

    ADS  Google Scholar 

  34. M.H.Y. Moussa, B. Baseia, Generation of the reciprocal-binomial state. Phys. Let. A. 238, 223 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  35. M.E. Marhic, P. Kumar, Squeezed states with a thermal photon distribution. Opt. Commun. 76, 143 (1990)

    ADS  Google Scholar 

  36. B. Baseia, C.M.A. Dantas, M.H.Y. Moussa, Pure states having thermal photon distribution revisited: generation and phase-optimization. Phys. A. 258, 203 (1998)

    Google Scholar 

  37. L. Mandel, Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 2015 (1979)

    Google Scholar 

  38. M. Hillery, Nonclassical distance in quantum optics. Phys. Rev. A. 35, 725 (1987)

    ADS  Google Scholar 

  39. J.M.C. Malbouisson, B. Baseia, On the measure of nonclassicality of field states. Phys. Scripta. 67, 93 (1987)

    ADS  MATH  Google Scholar 

  40. C.T. Lee, Measure of the nonclassicality of nonclassical states. Phys. Rev. A. 44, R2775 (1991)

    ADS  MathSciNet  Google Scholar 

  41. V.V. Dodonov, O.V. Man’ko, V.I. Man’ko, A. Wünsche, Hilbert-schmidt distance and nonclassicality of states in quantum optics. J. Mod. Opt. 47, 633 (2000)

    ADS  MATH  Google Scholar 

  42. M. Hillery, Classical pure states are coherent states. Phys. Lett. A. 111(8), 409 (1985)

    ADS  MathSciNet  Google Scholar 

  43. K.P. Zetie, S.F. Adams, R.M. Tocknell, How does a Mach-Zehnder interferometer work? Phys. Educ. 35(1), 46 (2000)

    ADS  Google Scholar 

  44. C.C. Gerry, Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A. 59(5), 4095 (1999)

    ADS  MathSciNet  Google Scholar 

  45. A.T. Avelar, J.M.C. Malbouisson, B. Baseia, A note on “Generalized superposition of two squeezed states: generation and statistical properties”. Physica A: Statistical Mechanics and its Applications. 334(1), 139 (2004)

    ADS  Google Scholar 

  46. A.T. Avelar, et al., Generation of superposed phase states via Raman interaction. J. Opt. B: Quantum Semiclassical Opt. 6(10), 383 (2004)

    ADS  Google Scholar 

  47. A.T. Avelar, B. Baseia, J.M.C. Malbouisson, Scheme for direct measurement of the Wigner characteristic function of traveling fields. Opt. Commun. 259(2), 754 (2006)

    ADS  Google Scholar 

  48. H.G. Baker, R.L. Singleton, Phys. Rev. A. 42, 10 (1990). https://doi.org/10.1103/PhysRevA.42.10

    Article  ADS  Google Scholar 

  49. H. Lee, W.S. I’yi, Phys. Rev. A. 51, 982 (1995). https://doi.org/10.1103/PhysRevA.51.982

    Article  ADS  Google Scholar 

  50. S. Longhi, Phys. Rev. Lett. 105, 013903 (2010). https://doi.org/10.1103/PhysRevLett.105.013903

    Article  ADS  Google Scholar 

  51. J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990). https://doi.org/10.1103/PhysRevLett.65.3385

    Article  ADS  Google Scholar 

  52. C. Valverde, B. Baseia, Quantum Inf. Process. 12, 2019 (2013). https://doi.org/10.1007/s11128-012-0493-5

    Article  ADS  Google Scholar 

  53. A.T. Avelar, B. Baseia, J. Opt. B: Quantum Semiclass. Opt. 7, 198 (2005). https://doi.org/10.1088/1464-4266/7/6/007

    Article  ADS  MathSciNet  Google Scholar 

  54. Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K.D. Osborn, A. Mizel, F.C. Wellstood, B.S. Palmer, Phys. Rev. Lett. 106, 120501 (2011). https://doi.org/10.1103/PhysRevLett.106.120501

    Article  ADS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This study received partial supports from the Brazilian funding agencies Capes, CNPq and FAPEG. Research developed with support of the High-Performance Computing Center at the Universidade Estadual de Goiás (UEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. S. Ferreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C.J.S., Valverde, C. & Baseia, B. Evolution of Statistical Properties of Hybrid System Starting from Binary Field States Constructed in Experiments. Braz J Phys 49, 173–182 (2019). https://doi.org/10.1007/s13538-019-00646-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00646-9

Keywords

Navigation