Skip to main content
Log in

A Study on Toxicity of Chemically Synthesised Silver Nanoparticle on Eudrilus eugeniae

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

To evaluate the toxicity of the silver nanoparticle against earthworms - Eudrilus eugeniae, a model for soil organism.

Methods

Silver nanoparticles were synthesised by chemical reduction and further characterised by UV Visible Spectroscopy and FeSEM. Earthworms were allowed to interact with different concentrations of the synthesized silver nanoparticles. After exposure period, histology and inductively coupled plasma optical emission spectrometry (ICP-OES) were done to determine the accumulation and toxic effects exhibited by the nanoparticle on earthworms.

Results

The synthesized nanoparticle was found to be between the size of 180 and 200 nm. Histology studies revealed that silver nanoparticles to cause fibrosis, lipofuscin-like deposits and also gut disruption in earthworms.

Conclusion

Silver nanoparticles were found to be toxic to Eudrilus eugeniae, which was evidenced by histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hongyin, Z. Application of Silver Nanoparticle in Drinking Water Purification, Open Access Dissertations (2013).

    Google Scholar 

  2. Duncan, T. V. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensor. J. Colloid Interface Sci. 363, 1–24 (2011).

    Article  PubMed  CAS  Google Scholar 

  3. Caro, C., Castillo, P. M. Klippstein, R., Pozo, D. & Zaderenko, A. P. Silver Nanoparticle: Sensing and Imaging Application: In Nanotechnology and Nanomaterials, Intech Publishers. 201–205 (2010).

    Google Scholar 

  4. Anuradha, P., Prajapati, P. & Boghra, R. Overview on application of nanoparticles in cosmetics. Asian J. Pharm. Sci. Clin. Res. 1, 40–55 (2011).

    Google Scholar 

  5. Ahn, S. J., Lee, S. J., Kook, J. K. & Lim, B. S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. J. 25, 206–213 (2009).

    Article  CAS  Google Scholar 

  6. Prabhu, S. & Poulose, E. K. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2, 32 (2012).

    Article  Google Scholar 

  7. EI-Deeb, N. M., EI-Sherbiny, I. M., EI-Aassara, M. R. & Hafez, E. E. Novel Trends in Colon Cancer Therapy Using Silver Nanoparticle Synthesised by Honey Bee. J. Nanomed. Nanotechnol. 6, 265 (2015).

    Google Scholar 

  8. Soumya, R. S. & Hela, P. H. Nano silver based targeted drug delivery for treatment of cancer. Pharm. Lett. 5, 189–197 (2013).

    CAS  Google Scholar 

  9. Rodriguez-Leon, E. et al. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8, 318 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Selvi, K. V. & Sivakumar, T. Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbial. App. Sci. 1, 56–62 (2012).

    Google Scholar 

  11. Malina, D., Sobczak-Kupiec, A., Wzorek, Z. & Kowalaski, Z. Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct. 7, 1527–1534 (2012).

    Google Scholar 

  12. Su, C., Jiang, L. & Zhang, W. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skep. Crit. 3, 24–38 (2014).

    Google Scholar 

  13. Viljoen, S. A. & Reinecke, A. J. Life-cycle of the African nightcrawler, Eudrilus eugeniae (Oligochaeta). S. Afr. J. Zoo. 24, 27–32 (1989).

    Article  Google Scholar 

  14. Rashid, M. U., Bhuiyan, M. K. H. & Quayum, M. E. Synthesis of Silver Nano Particle (Ag-NPs) and Their Uses for Quantitative Analysis of Vitamin C Tablets. Dhaka Univ. J. Pharm. Sci. 12, doi:10.3329/dujps. v12i1.16297 (2013).

  15. Devaraj, P., Kumari, P., Aarti, C. & Renganathan, A. Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line. J. Nanotechnol. 2013, doi: 10.1155/2013/598328 (2013).

  16. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  17. Hussain, J. I., Kumar, S., Hashmi, A. A. & Khan, Z. Silver nanoparticles: preparation, characterization and kinetics. Adv. Mat. Lett. 2, 188–194 (2011).

    Article  CAS  Google Scholar 

  18. Guzman, M. G., Dille, J. & Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2, 91–98 (2009).

    Google Scholar 

  19. Raza, M. K. et al. Size-and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials 6, doi:10.3390/ nano6040074 (2016).

  20. Jiang, X. C., Chen, W. M., Chen, C. Y., Xiong, S. X. & Yu, A. B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 6, doi:10.1007/s11671-010-9780-1 (2011).

  21. Ploeg, M. J. C. V. et al. Effects of silver nanoparticles (nm-300k) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environ. Toxicol. Chem. 33, 743–752 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Shoults-Wilson, et al. Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms. Soil Sci. Soc. Am. J. 75, doi:10.2136/sssaj2010.0127nps (2011).

  23. Barua, S. et al. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids and Surfaces B: Biointerfaces. 105, 37–42 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Goswami, L. et al. Hazard remediation and recycling of tea industry and paper mill bottom ash through vermi conversion. Chemosphere 92, 708–713 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Sahariah, B., Goswami, L., Kim, K. H., Bhattacharyya, P. C. & Bhattacharya, S. S. Metal remediation and biodegradation potential of earthworm species on municipal solid waste: A parallel analysis between Metaphire posthuma and Eisenia fetida. Bioresour. Technol. 180, 230–236 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Goswami, L. et al. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci. Rep. 6, 30402 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schlich, K., Klawonn, T., Terytze, K. & Hund-rinke, K. Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environ. Toxicol. Chem. 32, 181–188 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Sherman, R. Raising earthworms successfully. EBAE 103, 83 (2003).

    Google Scholar 

  29. Samrot, A. V., Bhavya, K. S., Sahithya, C. S. & Sowmya, N. Evaluation of toxicity of chemically synthesised gold nanoparticles against Eudrilus eugeniae. J. Clust. Sci. 29, 1217–1225 (2018).

    Article  CAS  Google Scholar 

  30. Button, M., Watts, M. J., Cave, M. R., Harrington, C. F. & Jenkin, G. T. Earthworms and in vitro physiologically-based extraction tests: complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environ. Geochem. Health. 31, 273–282 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrot, A.V., Burman, U., S, P. et al. A Study on Toxicity of Chemically Synthesised Silver Nanoparticle on Eudrilus eugeniae. Toxicol. Environ. Health Sci. 10, 162–167 (2018). https://doi.org/10.1007/s13530-018-0360-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0360-6

Keywords

Navigation