The role of cardamom on the hazardous effects of depleted uranium in cerebellum and midbrain of albino rats

  • Mona Abdel-Rahman
  • Mohamed Mahmoud Rezk
  • Seham Abdel Kader
Original Article

Abstract

The present study aimed to investigate uranium hazardous effects, as well as the ameliorative effects of cardamom on the cerebellum and midbrain of adult male albino rats at different time intervals. The administration of 40 mg/Kg of uranyl acetate dehydrate (UAD) caused a significant decrease in Pi, K+ ions contents and GSH level while, a significant increase in Na+ and Ca2+ ions content and MDA level were observed, which may be due to the decrease in ATP synthesis and the inhibition of Na+/K+ ATPase activity. Also, UDA has the ability to increase lipid peroxidation and decrease GSH synthesis. On the other hand, the administration of 250 mg/kg of cardamom extract induced significant increase in Pi, K+ ions content and GSH level, while it caused a significant decrease in Na+, Ca2+ ions content and MDA level which may be due to the increase of ATP synthesis and its anticonvulsant and antioxidant effects. It could be concluded that the pre -and post-treatment with cardamom could ameliorate the hazardous effects of UAD intoxication.

Keywords

Depleted uranium Cardamom Ions MDA GSH Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kamath, D., Arunkumar, D., Avinash, N. & Samshuddin, S. Determination of total phenolic content and total antioxidant activity in locally consumed food stuffs in Moundbird, Karnataka and India. Adv. Appl. Sci. Res. 6, 99–102 (2015).Google Scholar
  2. 2.
    Aqil, F., Ahmed, I. & Mehmood, Z. Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk. J. Biol. 30, 177–183 (2006).Google Scholar
  3. 3.
    Smarth, R. M. & Kumar, A. Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J. Radiat. Res. 44, 101–109 (2003).CrossRefGoogle Scholar
  4. 4.
    Lahlou, S., Figuereido, A. F., Magalhães, P. J. C. & LealCardoso, J. H. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can. J. Physiol. Pharmacol. 80, 125–130 (2002).CrossRefGoogle Scholar
  5. 5.
    Vishwakarma, S., Chandan, K., Caroline, R. & Khushbu, S. Comparative study of Qualitative Phytochemical screening and antioxidant activity of Mentha arvensis, Elettaria cardamomum and Allium porrum. Indo Ameri. J. Pharma. Res. 4, 2538–2556 (2014).Google Scholar
  6. 6.
    Abdel-Kader, S., Abdel-Rahman, M., Bauomi, A., Mohammaden, T. & Rezk, M. M. Antioxidant Potentials of (Elletaria cardamomum) Cardamom against Uranium Hazards. Int. J. Basic. Life. Sci. 3, 122–138 (2015).Google Scholar
  7. 7.
    Mahady, G. B. et al. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Photother. Res. 19, 988–991 (2005).CrossRefGoogle Scholar
  8. 8.
    Bhat, N. et al. Comparison of the efficacy of cardamom (Elettaria cardamomum) with pioglitazone on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in albino rats. J. Adv. Pharma. Techno. Res. 3, 136–140 (2016).Google Scholar
  9. 9.
    Suneetha, W. J. & Krishnakantha, T. P. Cardamom extract as inhibitor of human platelet aggregation. Phytother. Res. 19, 437–440 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    Sengupta, A., Ghosh, S. & Bhattachar-jee, S. Dietary cardamom inhibits the formation of azoxymethane induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian. Pac. J. Cancer Prev. 6, 118–122 (2005).PubMedGoogle Scholar
  11. 11.
    Gilani, A. H., Jabeen, Q., Khan, A. U. & Shah, A. J. Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J. Ethnopharmacol. 115, 463–472 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    WNA. “World Nuclear As-sociation: World Uranium Mining Production. London. http://www.worldnuclear.org/uploadedFiles/Pocket%20 (2013).Google Scholar
  13. 13.
    WNA., World Nuclear Association: WNA Public Information Service. London. http://www.world-nuclear.org/infomap.aspx (2014).Google Scholar
  14. 14.
    Keith, L., Faroon, O. M. & Fowler, B. A. in Hand book of toxicology of metal (eds Gunnar F. Nordberg) 1307-1345 (Rollins School of Public Health Fairbanks, USA 2015).Google Scholar
  15. 15.
    Hensley, K. Neuro-inflammatory aberrations of arachidonate pathway in ALS. Neuroscience. Bioachm. Biophys. Res. Commun. 82, 70–74 (2004).Google Scholar
  16. 16.
    Castro-Fernandez, C., Maya-Nunez, G. & Conn, P. M. Beyond the signaling sequence: Protein routing in health and disease. Endocr. Rev. 26, 25–40 (2005).CrossRefGoogle Scholar
  17. 17.
    Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem. Biol. Interact. 160, 1–40 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    McDiarmid, M. et al. The Gulf War depleted uranium cohort at 20: bioassay results and novel approachesto fragment surveillance. Health Phys. 104, 347–361 (2013).PubMedCrossRefGoogle Scholar
  19. 19.
    Tissandie, E. et al. In vivo effects of chronic contamination with depleted uranium on vitamin D3 metabolism in rat. Biochim. Biophys. Acta., 1770, 266–272 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    Katz, S. A. The Chemistry and Toxicology of Depleted Uranium. Toxics. 2, 50–78 (2014).CrossRefGoogle Scholar
  21. 21.
    Arnault, E., Doussau, M. & Pesty, A. Natural uranium disturbs mouse folliculogenesis in vivo and oocyte meiosis in vitro. Toxicology 247: 80–87 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    Abdel-Rahman, M., Bauomi, A., Abdel-Kader S., Mohammaden, T. & Rezk, M. M. Effect of Cardamom (Elletaria cardamomum) on Brain Ions and Acetylcholine Esterase Enzyme of Albino Rats Ingested Uranium. Int. J. Basic. Life. Sci. 3, 122–138 (2015).Google Scholar
  23. 23.
    Paquet, F. et al. Accumulation and distribution of uranium in rats after chronic exposure by ingestion. Health. Phys. 90, 139–147 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    Kalinich, J. & Kasper, C. Do metals that translocate to the brain exacerbate traumatic brain injury? Med.l Hypotheses 82, 558–562 (2014).CrossRefGoogle Scholar
  25. 25.
    Radcliffe, P. M. et al. Acute sodium tungstate inhalation is associated with minimal olfactory transport of tungsten (188W) to the rat brain. Neurotoxicology 30, 445–450 (2009).PubMedCrossRefGoogle Scholar
  26. 26.
    Guyton, A. G. & Hall, J. E. in Text book of medical physiology (eds Reproductive and hormonal faction of male) 996–1011 (2006).Google Scholar
  27. 27.
    Oliver, J. A further study of the regenerated epithelium in chronic uranium nephritis: an anatomical investigation of its function. J. Exp. Med. 23, 301–321 (1916).PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Taulan, M. et al. Renal toxicogenomic response to chronic uranyl nitrate insult in mice. Environ. Health Perspect. 112, 1628–1635 (2004).PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ericinska, M. & Silver, I. A. Ions and energy in mammalian brain. Prog. Neurobiol. 43, 37–71 (1994).CrossRefGoogle Scholar
  30. 30.
    Franco, A. A., Odom, R. S. & Rando, T. A. Regulation of antioxidant enzymes gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic. Biol. Med. 50, 2093–2098 (1999).Google Scholar
  31. 31.
    Shaki, F., Hosseini, M., Ghazi-Khansari, M. & Pourahmad, J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochimica. et Biophysica. Acta. 1820, 1940–1950 (2012).PubMedCrossRefGoogle Scholar
  32. 32.
    Beal, M. F. Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    Abou-Donia, M. B. et al. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol. Biochem. Behav. 72, 881–890 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    Bloom. in The pharmacological basis of therapeutics (eds Lazo, J. S. & Parker, K. L.) 31, 7-341 (New York, USA. 2006).Google Scholar
  35. 35.
    Boice, J.D. et al. A cohort study of uranium millers and miners of Grants, New Mexico, 1979-2005. J. Radiol. Prot. 28, 303–325 (2006).CrossRefGoogle Scholar
  36. 36.
    Lestaevel, P. et al. Changes in sleep-wake cycle after chronic exposure to uranium in rats. Neurotoxol. Teratol. 27, 835–840 (2005).CrossRefGoogle Scholar
  37. 37.
    Houpert, P., Lestaevel, P., Bussy, C., Paquet, F. & Gourmelo, P. Enriched but not depleted uranium affects central nervous system in long-term exposed rat. J. Neurotoxicol. 26, 1015–1020 (2005).CrossRefGoogle Scholar
  38. 38.
    Houpert, P. et al. Heterogeneous accumulation of uranium in the brain of rats. Radiat. Prot. Dosimetry. 127, 86–89 (2007).PubMedCrossRefGoogle Scholar
  39. 39.
    Kang, J. & Pervaiz, S. Mitochondria: Redox Metabolism and Dysfunction. Biochem. Res. Inter. 2012, 1–14 (2012).CrossRefGoogle Scholar
  40. 40.
    Lwasa, S. & Bwowe, F. Exploring the Economic Potential of Cardamom (Elettaria cardamomum) as an alternative and promising income source for Uganda’s smallholder farmers. ACSS Sci. Conf. Proc. 8, 1317–1321 (2007).Google Scholar
  41. 41.
    Winarsi, H., Sasongko, N. D., Purwanto, A. & Nuraeni, I. Effect of cardamom leaves extract as antidiabetic, weight lost and hypocholesterolemic to alloxan-induced Sprague Dawley diabetic rats. Int. Food Res. J. 21, 2253–2261 (2014).Google Scholar
  42. 42.
    Singh, G., Kapoor, I., & Singh, P. Effect of volatile oil and oleoresin of anise on the shelf life of yogurt. J. Food Process. Pres. 35, 47–49 (2011).CrossRefGoogle Scholar
  43. 43.
    González-Trujano, M. F. et al. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J. Ethnopharmacol. 111, 476–482 (2007).PubMedCrossRefGoogle Scholar
  44. 44.
    Gilani, A. H., Jabeen, Q., Ghayur, M. N., Janbaz, K. H. & Akhtar, M. S. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J. Ethnopharmacol. 98, 127–135 (2005).PubMedCrossRefGoogle Scholar
  45. 45.
    Fleckenstein, A. Specific pharmacology of Ca++ in myocardium cardiac pacemakers and vascular smooth muscle. Rev. Pharmacol. and Toxicol. 17, 149–166 (1977).CrossRefGoogle Scholar
  46. 46.
    Kovacic, P. & Jacintho, J. D. Reproductive toxins, pervasive theme of oxidative stress and electron transfer. Curr. Med. Chem. 8, 863–892 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    Chitra, K. C., Latchoumycandane, C. & Mathur, P. P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 14, 119–127 (2003).CrossRefGoogle Scholar
  48. 48.
    Ghosh, S., Kumar, A., Pandey, B. N. & Mishra, K. P. Acute exposure of uranyl nitrate causes lipid peroxidation and histopathological damage in brain and bone of Wistar rat. J. Environ. Pathol. Tox. 26, 255–261 (2007).CrossRefGoogle Scholar
  49. 49.
    Linares, V. et al. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress. Toxicology 236, 82–91 (2007).PubMedCrossRefGoogle Scholar
  50. 50.
    Ahmed, H. H., Abdel-Rahman, M., Ali, R. A. & Abdel Moniem, A. Protective effect of Ginkgo Biloba Extract and Pumpkin Seed Oil Against Neurotoxicity of Rotenone in Adult Male Rats. J. Appl. Sci. Res. 5, 622–635 (2002).Google Scholar
  51. 51.
    Manchester, L. C. et al. High levels of melatonin in the seeds of edible plants. Possible function in germ tissue protection. Life Sci. 67, 23–29 (2000).Google Scholar
  52. 52.
    Toklu, H., Deniz, M., Yüksel, M., Keyer-Uysal, M. & Şener, G. The protective effect of melatonin and amlodipine against cerebral ischemia/reperfusion-induced oxidative brain injury in rats. Marmara Med. J. 22, 034–044 (2009).Google Scholar
  53. 53.
    Ozturk, M., Aydoğmus-Ozturk, F., Duru, M. E. & Topcu, G. Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chem. 103, 623–630 (2008).CrossRefGoogle Scholar
  54. 54.
    Ak, T. & Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Int. 174, 27–37 (2008).CrossRefGoogle Scholar
  55. 55.
    Chen, X. & Ahn, D. U. Antioxidant activities of six natural phenolics against lipid oxidation induced by Fe+ or ultraviolet light. J. Am. Oil Chem. Soc. 75, 1717–1721 (1998).CrossRefGoogle Scholar
  56. 56.
    Kunwar, T., Kumar, N. & Kothiyal, P. Effect of Elettaria cardamomum hydroethanolic extract on learning and memory in Scopolamine induced amnesia. World J. Pharmaceut. Sci. 3, 75–85 (2015).Google Scholar
  57. 57.
    Litwinienko, G. & Ingold, K. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40, 222 (2007).PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt, T. J., Muller, E. & Fronczek, F. R. New allocedrane type sesquiterpene hemiketals and further sesquiterpene lactones from fruits of Illicium floridanum. J. Nat. Prod. 64, 411–414 (2001).PubMedCrossRefGoogle Scholar
  59. 59.
    Hossain, M. B., Brunton, N. P., Barry-Ryan, C., Martin- Diana, A. B. & Wilkinson, M. Antioxidant activity of spice extracts and phenolics in parisom to synthetic antioxidant Rasayan. J. Chem. 4, 751–756 (2008).Google Scholar
  60. 60.
    Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. & Greenamyre, T. J. Chronic systemic pesticide exposure produces feature of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306 (2000).PubMedCrossRefGoogle Scholar
  61. 61.
    Domingo, J. L., Llobet, J. M., Tomas, J. M. & Corbella, J. Acute toxicity of uranium in rats and mice. Bull. Environ. Contam. Toxicol. 39, 168–174 (1987).PubMedCrossRefGoogle Scholar
  62. 62.
    Alhaider, A. A., Al-Mofelh, I. A., Mossa, J. S., Al-Sohaibani, M. O., Qureshi, S. & Rafatullah, S. Pharmacological and safety evaluation studies on Elettaria cardamomum: An important ingredient of gahwa (Arabian coffee). Arb. J. Pharmacol. Sci. 47-58, 47–58 (2005).Google Scholar
  63. 63.
    Glowinski, L. J. & Iversen, L. L. Regonal studies of catecholamines in the rat brain. I. Disposition of Hanoradrenaline, Ha-dopamine and Ha-dopa in various regions of brain. J. Neurochem. 13, 655–669 (1966).PubMedCrossRefGoogle Scholar
  64. 64.
    Yellepeddi, V. in Lippincott Illustrated Reviews: Pharmacology 6th eds (Philadilphia, Baltimora, Newyork. 2015).Google Scholar
  65. 65.
    FAO “Food Administration Organizationn”. Committee for Inland fisheries of Africa. Report of the third session of the working party on pollution and Hisheries. Accra, Ghana, 25-29 (1992).Google Scholar
  66. 66.
    Cicik, B. & Engin, K. The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turk. J. Vet. Arum. Sci. 29, 113–117 (2005).Google Scholar
  67. 67.
    Marczenko, Z. in Spectrophotometric determination of elements (Ellis Harwood Ltd, Chicheste, 1976).Google Scholar
  68. 68.
    Dai, H. et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J. Biol. Chem. 289, 89–99 (2014).PubMedCrossRefGoogle Scholar
  69. 69.
    Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).PubMedCrossRefGoogle Scholar
  70. 70.
    Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Ann. Biochem. 95, 351–358 (1979).CrossRefGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mona Abdel-Rahman
    • 1
  • Mohamed Mahmoud Rezk
    • 2
  • Seham Abdel Kader
    • 3
  1. 1.Zoology departmentHelwan UniversityCairoEgypt
  2. 2.Isotopes Geology departmentNuclear Materials AuthorityCairoEgypt
  3. 3.Radioactive isotopes departmentAtomic Energy AuthorityCairoEgypt

Personalised recommendations