Gate Architecture Effects on the Gate Leakage Characteristics of GaN Wrap-gate Nanowire Transistors

Abstract

Gate leakage current in lateral GaN wrap-gate nanowire transistors (WG-NWT) was investigated using current density–voltage (Jg–Vg) characteristics at room temperature. We found that the gate leakage current is strongly dependent on the top corner angle of the gate architecture. This leakage current was characterized by considering hopping (Poole–Frenkel emission) and trap-assisted thermionic emission mechanisms. Despite its smaller gate area, the gate leakage current of the lateral GaN WG-NWT without a 2DEG channel was higher than that of the device with a 2DEG channel for all applied gate biases. The reason for this is that the lateral GaN WG-NWT without 2DEG channel has a triangular cross-section with a sharp top corner angle resulting in a strong electric field due to geometrical field enhancement.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

References

  1. 1.

    Lieber, C.M., Wang, Z.L.: MRS Bull. 32, 99 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    Yang, P., Yan, R., Fardy, M.: Nano Lett. 10, 1529 (2015)

    Article  Google Scholar 

  3. 3.

    Calarco, R., Stoica, T., Brandt, O., Geelhaar, L.: J. Mater. Res. 26, 2157 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    Das, P., Jana, S.K., Halder, N.N., Mallik, S., Mahato, S.S., Panda, A.K., Chow, P.P., Biswas, D.: Electron. Mater. Lett. 14, 784–792 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    Jo, Y.J., Jin, H.S., Ha, M.-W., Park, T.J.: Electron. Mater. Lett. 15, 179–185 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Im, K.-S., Won, C.-H., Jo, Y.-W., Lee, J.-H., Bawedin, M., Crostoloveanu, S., Lee, J.-H.: IEEE Trans. Electron Devices 60, 3012 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    Doyle, B.S., Boyanov, B.S., Datta, S.M., Doczy, M.L., Hareland, S., Jin, B., Kavalieros, J.T., Linton, T.M., Rios, R., Chau, R.: Symposium on VLSI Technology. Digest of Technical Papers, p. 133 (2003)

  8. 8.

    Im, K.-S., Sindhuri, V., Jo, Y.-W., Son, D.-H., Lee, J.-H., Cristoloveanu, S.: Appl. Phys. Express 8, 066501 (2015)

    Article  Google Scholar 

  9. 9.

    Vashaee, D., Shakouri, A., Goldberger, J., Kuykendall, T., Pauzauskie, P., Yang, P.: J. Appl. Phys. 99, 054310 (2006)

    Article  Google Scholar 

  10. 10.

    Motayed, A., Vaudin, M., Davydov, A.V., Melngailis, J., He, M., Mohammad, S.N.: Appl. Phys. Lett. 90, 043104 (2007)

    Article  Google Scholar 

  11. 11.

    Yu, J.-W., Yeh, P.-C., Wang, S.-L., Wu, Y.-R., Mao, M.-H., Lin, H.-H., Peng, L.-H.: Appl. Phys. Lett. 101, 183501 (2012)

    Article  Google Scholar 

  12. 12.

    Gacevic, Z., Lopez-Romero, D., Mangas, T.J., Calleja, E.: Appl. Phys. Lett. 108, 033101 (2016)

    Article  Google Scholar 

  13. 13.

    Im, K.-S., Won, C.-H., Vodapally, S., Caulmione, R., Kim, Y.-T., Lee, J.-H., Cristolovenau, S.: Appl. Phys. Lett. 109, 143106 (2016)

    Article  Google Scholar 

  14. 14.

    Reddy, M.S.P., Im, K.-S., Lee, J.-H., Caulmione, R., Cristolovenau, S.: Nano Res. 12, 809 (2019)

    Article  Google Scholar 

  15. 15.

    Im, K.-S., Won, C.-H., Vodapally, S., Son, D.-H., Jo, Y.-W., Park, Y.-H., Lee, J.-H., Lee, J.-H.: J. Cryst. Growth 441, 41 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    Feenstra, R.M., Dong, Y., Lee, C.D., Northrup, J.E.: J. Vac. Sci. Technol. B 23, 1174 (2005)

    CAS  Article  Google Scholar 

  17. 17.

    Wong, B.M., Leonard, F., Li, Q., Wang, G.T.: Nano Lett. 11, 3074 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    Turuvekere, S., Karumuri, N., Rahman, A.A., Bhattacharya, A., DasGupta, A., DasGupta, N.: IEEE Trans. Electron Devices 60, 3157 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    Dutta, G., DasGupta, N., DasGupta, A.: IEEE Trans. Electron Devices 64, 3609 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Fusion Research (NRF-2018R1D1A1B07040603) and BK21 Plus funded by the Ministry of Education (21A20131600011). Also, partially funded by NRF-2019R1I1A1A01064011.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ki-Sik Im or Jung-Hee Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mallem, S.P.R., Im, K., Thingujam, T. et al. Gate Architecture Effects on the Gate Leakage Characteristics of GaN Wrap-gate Nanowire Transistors. Electron. Mater. Lett. (2020). https://doi.org/10.1007/s13391-020-00229-w

Download citation

Keywords

  • GaNOI
  • Nanowire
  • Wrap-gate transistor
  • Triangular/trapezoidal architectures
  • Corner angle